summaryrefslogtreecommitdiff
path: root/training/liblbfgs/lbfgs.c
blob: 0add48f4c1f305f1145cc9b13a786a38f4e51c6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
/*
 *      Limited memory BFGS (L-BFGS).
 *
 * Copyright (c) 1990, Jorge Nocedal
 * Copyright (c) 2007-2010 Naoaki Okazaki
 * All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/* $Id$ */

/*
This library is a C port of the FORTRAN implementation of Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal.
The original FORTRAN source code is available at:
http://www.ece.northwestern.edu/~nocedal/lbfgs.html

The L-BFGS algorithm is described in:
    - Jorge Nocedal.
      Updating Quasi-Newton Matrices with Limited Storage.
      <i>Mathematics of Computation</i>, Vol. 35, No. 151, pp. 773--782, 1980.
    - Dong C. Liu and Jorge Nocedal.
      On the limited memory BFGS method for large scale optimization.
      <i>Mathematical Programming</i> B, Vol. 45, No. 3, pp. 503-528, 1989.

The line search algorithms used in this implementation are described in:
    - John E. Dennis and Robert B. Schnabel.
      <i>Numerical Methods for Unconstrained Optimization and Nonlinear
      Equations</i>, Englewood Cliffs, 1983.
    - Jorge J. More and David J. Thuente.
      Line search algorithm with guaranteed sufficient decrease.
      <i>ACM Transactions on Mathematical Software (TOMS)</i>, Vol. 20, No. 3,
      pp. 286-307, 1994.

This library also implements Orthant-Wise Limited-memory Quasi-Newton (OWL-QN)
method presented in:
    - Galen Andrew and Jianfeng Gao.
      Scalable training of L1-regularized log-linear models.
      In <i>Proceedings of the 24th International Conference on Machine
      Learning (ICML 2007)</i>, pp. 33-40, 2007.

I would like to thank the original author, Jorge Nocedal, who has been
distributing the effieicnt and explanatory implementation in an open source
licence.
*/

#ifdef  HAVE_CONFIG_H
#include <config.h>
#endif/*HAVE_CONFIG_H*/

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "liblbfgs/lbfgs.h"

#ifdef  _MSC_VER
#define inline  __inline
#endif/*_MSC_VER*/

#if     defined(USE_SSE) && defined(__SSE2__) && LBFGS_FLOAT == 64
/* Use SSE2 optimization for 64bit double precision. */
#include "arithmetic_sse_double.h"

#elif   defined(USE_SSE) && defined(__SSE__) && LBFGS_FLOAT == 32
/* Use SSE optimization for 32bit float precision. */
#include "arithmetic_sse_float.h"

#else
/* No CPU specific optimization. */
#include "arithmetic_ansi.h"

#endif

#define min2(a, b)      ((a) <= (b) ? (a) : (b))
#define max2(a, b)      ((a) >= (b) ? (a) : (b))
#define max3(a, b, c)   max2(max2((a), (b)), (c));

struct tag_callback_data {
    int n;
    void *instance;
    lbfgs_evaluate_t proc_evaluate;
    lbfgs_progress_t proc_progress;
};
typedef struct tag_callback_data callback_data_t;

struct tag_iteration_data {
    lbfgsfloatval_t alpha;
    lbfgsfloatval_t *s;     /* [n] */
    lbfgsfloatval_t *y;     /* [n] */
    lbfgsfloatval_t ys;     /* vecdot(y, s) */
};
typedef struct tag_iteration_data iteration_data_t;

static const lbfgs_parameter_t _defparam = {
    6, 1e-5, 0, 1e-5,
    0, LBFGS_LINESEARCH_DEFAULT, 40,
    1e-20, 1e20, 1e-4, 0.9, 0.9, 1.0e-16,
    0.0, 0, -1,
};

/* Forward function declarations. */

typedef int (*line_search_proc)(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *f,
    lbfgsfloatval_t *g,
    lbfgsfloatval_t *s,
    lbfgsfloatval_t *stp,
    const lbfgsfloatval_t* xp,
    const lbfgsfloatval_t* gp,
    lbfgsfloatval_t *wa,
    callback_data_t *cd,
    const lbfgs_parameter_t *param
    );
    
static int line_search_backtracking(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *f,
    lbfgsfloatval_t *g,
    lbfgsfloatval_t *s,
    lbfgsfloatval_t *stp,
    const lbfgsfloatval_t* xp,
    const lbfgsfloatval_t* gp,
    lbfgsfloatval_t *wa,
    callback_data_t *cd,
    const lbfgs_parameter_t *param
    );

static int line_search_backtracking_owlqn(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *f,
    lbfgsfloatval_t *g,
    lbfgsfloatval_t *s,
    lbfgsfloatval_t *stp,
    const lbfgsfloatval_t* xp,
    const lbfgsfloatval_t* gp,
    lbfgsfloatval_t *wp,
    callback_data_t *cd,
    const lbfgs_parameter_t *param
    );

static int line_search_morethuente(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *f,
    lbfgsfloatval_t *g,
    lbfgsfloatval_t *s,
    lbfgsfloatval_t *stp,
    const lbfgsfloatval_t* xp,
    const lbfgsfloatval_t* gp,
    lbfgsfloatval_t *wa,
    callback_data_t *cd,
    const lbfgs_parameter_t *param
    );

static int update_trial_interval(
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *fx,
    lbfgsfloatval_t *dx,
    lbfgsfloatval_t *y,
    lbfgsfloatval_t *fy,
    lbfgsfloatval_t *dy,
    lbfgsfloatval_t *t,
    lbfgsfloatval_t *ft,
    lbfgsfloatval_t *dt,
    const lbfgsfloatval_t tmin,
    const lbfgsfloatval_t tmax,
    int *brackt
    );

static lbfgsfloatval_t owlqn_x1norm(
    const lbfgsfloatval_t* x,
    const int start,
    const int n
    );

static void owlqn_pseudo_gradient(
    lbfgsfloatval_t* pg,
    const lbfgsfloatval_t* x,
    const lbfgsfloatval_t* g,
    const int n,
    const lbfgsfloatval_t c,
    const int start,
    const int end
    );

static void owlqn_project(
    lbfgsfloatval_t* d,
    const lbfgsfloatval_t* sign,
    const int start,
    const int end
    );


#if     defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
static int round_out_variables(int n)
{
    n += 7;
    n /= 8;
    n *= 8;
    return n;
}
#endif/*defined(USE_SSE)*/

lbfgsfloatval_t* lbfgs_malloc(int n)
{
#if     defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
    n = round_out_variables(n);
#endif/*defined(USE_SSE)*/
    return (lbfgsfloatval_t*)vecalloc(sizeof(lbfgsfloatval_t) * n);
}

void lbfgs_free(lbfgsfloatval_t *x)
{
    vecfree(x);
}

void lbfgs_parameter_init(lbfgs_parameter_t *param)
{
    memcpy(param, &_defparam, sizeof(*param));
}

int lbfgs(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *ptr_fx,
    lbfgs_evaluate_t proc_evaluate,
    lbfgs_progress_t proc_progress,
    void *instance,
    lbfgs_parameter_t *_param
    )
{
    int ret;
    int i, j, k, ls, end, bound;
    lbfgsfloatval_t step;

    /* Constant parameters and their default values. */
    lbfgs_parameter_t param = (_param != NULL) ? (*_param) : _defparam;
    const int m = param.m;

    lbfgsfloatval_t *xp = NULL;
    lbfgsfloatval_t *g = NULL, *gp = NULL, *pg = NULL;
    lbfgsfloatval_t *d = NULL, *w = NULL, *pf = NULL;
    iteration_data_t *lm = NULL, *it = NULL;
    lbfgsfloatval_t ys, yy;
    lbfgsfloatval_t xnorm, gnorm, beta;
    lbfgsfloatval_t fx = 0.;
    lbfgsfloatval_t rate = 0.;
    line_search_proc linesearch = line_search_morethuente;

    /* Construct a callback data. */
    callback_data_t cd;
    cd.n = n;
    cd.instance = instance;
    cd.proc_evaluate = proc_evaluate;
    cd.proc_progress = proc_progress;

#if     defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
    /* Round out the number of variables. */
    n = round_out_variables(n);
#endif/*defined(USE_SSE)*/

    /* Check the input parameters for errors. */
    if (n <= 0) {
        return LBFGSERR_INVALID_N;
    }
#if     defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
    if (n % 8 != 0) {
        return LBFGSERR_INVALID_N_SSE;
    }
    if ((uintptr_t)(const void*)x % 16 != 0) {
        return LBFGSERR_INVALID_X_SSE;
    }
#endif/*defined(USE_SSE)*/
    if (param.epsilon < 0.) {
        return LBFGSERR_INVALID_EPSILON;
    }
    if (param.past < 0) {
        return LBFGSERR_INVALID_TESTPERIOD;
    }
    if (param.delta < 0.) {
        return LBFGSERR_INVALID_DELTA;
    }
    if (param.min_step < 0.) {
        return LBFGSERR_INVALID_MINSTEP;
    }
    if (param.max_step < param.min_step) {
        return LBFGSERR_INVALID_MAXSTEP;
    }
    if (param.ftol < 0.) {
        return LBFGSERR_INVALID_FTOL;
    }
    if (param.linesearch == LBFGS_LINESEARCH_BACKTRACKING_WOLFE ||
        param.linesearch == LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
        if (param.wolfe <= param.ftol || 1. <= param.wolfe) {
            return LBFGSERR_INVALID_WOLFE;
        }
    }
    if (param.gtol < 0.) {
        return LBFGSERR_INVALID_GTOL;
    }
    if (param.xtol < 0.) {
        return LBFGSERR_INVALID_XTOL;
    }
    if (param.max_linesearch <= 0) {
        return LBFGSERR_INVALID_MAXLINESEARCH;
    }
    if (param.orthantwise_c < 0.) {
        return LBFGSERR_INVALID_ORTHANTWISE;
    }
    if (param.orthantwise_start < 0 || n < param.orthantwise_start) {
        return LBFGSERR_INVALID_ORTHANTWISE_START;
    }
    if (param.orthantwise_end < 0) {
        param.orthantwise_end = n;
    }
    if (n < param.orthantwise_end) {
        return LBFGSERR_INVALID_ORTHANTWISE_END;
    }
    if (param.orthantwise_c != 0.) {
        switch (param.linesearch) {
        case LBFGS_LINESEARCH_BACKTRACKING:
            linesearch = line_search_backtracking_owlqn;
            break;
        default:
            /* Only the backtracking method is available. */
            return LBFGSERR_INVALID_LINESEARCH;
        }
    } else {
        switch (param.linesearch) {
        case LBFGS_LINESEARCH_MORETHUENTE:
            linesearch = line_search_morethuente;
            break;
        case LBFGS_LINESEARCH_BACKTRACKING_ARMIJO:
        case LBFGS_LINESEARCH_BACKTRACKING_WOLFE:
        case LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE:
            linesearch = line_search_backtracking;
            break;
        default:
            return LBFGSERR_INVALID_LINESEARCH;
        }
    }

    /* Allocate working space. */
    xp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
    g = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
    gp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
    d = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
    w = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
    if (xp == NULL || g == NULL || gp == NULL || d == NULL || w == NULL) {
        ret = LBFGSERR_OUTOFMEMORY;
        goto lbfgs_exit;
    }

    if (param.orthantwise_c != 0.) {
        /* Allocate working space for OW-LQN. */
        pg = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
        if (pg == NULL) {
            ret = LBFGSERR_OUTOFMEMORY;
            goto lbfgs_exit;
        }
    }

    /* Allocate limited memory storage. */
    lm = (iteration_data_t*)vecalloc(m * sizeof(iteration_data_t));
    if (lm == NULL) {
        ret = LBFGSERR_OUTOFMEMORY;
        goto lbfgs_exit;
    }

    /* Initialize the limited memory. */
    for (i = 0;i < m;++i) {
        it = &lm[i];
        it->alpha = 0;
        it->ys = 0;
        it->s = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
        it->y = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
        if (it->s == NULL || it->y == NULL) {
            ret = LBFGSERR_OUTOFMEMORY;
            goto lbfgs_exit;
        }
    }

    /* Allocate an array for storing previous values of the objective function. */
    if (0 < param.past) {
        pf = (lbfgsfloatval_t*)vecalloc(param.past * sizeof(lbfgsfloatval_t));
    }

    /* Evaluate the function value and its gradient. */
    fx = cd.proc_evaluate(cd.instance, x, g, cd.n, 0);
    if (0. != param.orthantwise_c) {
        /* Compute the L1 norm of the variable and add it to the object value. */
        xnorm = owlqn_x1norm(x, param.orthantwise_start, param.orthantwise_end);
        fx += xnorm * param.orthantwise_c;
        owlqn_pseudo_gradient(
            pg, x, g, n,
            param.orthantwise_c, param.orthantwise_start, param.orthantwise_end
            );
    }

    /* Store the initial value of the objective function. */
    if (pf != NULL) {
        pf[0] = fx;
    }

    /*
        Compute the direction;
        we assume the initial hessian matrix H_0 as the identity matrix.
     */
    if (param.orthantwise_c == 0.) {
        vecncpy(d, g, n);
    } else {
        vecncpy(d, pg, n);
    }

    /*
       Make sure that the initial variables are not a minimizer.
     */
    vec2norm(&xnorm, x, n);
    if (param.orthantwise_c == 0.) {
        vec2norm(&gnorm, g, n);
    } else {
        vec2norm(&gnorm, pg, n);
    }
    if (xnorm < 1.0) xnorm = 1.0;
    if (gnorm / xnorm <= param.epsilon) {
        ret = LBFGS_ALREADY_MINIMIZED;
        goto lbfgs_exit;
    }

    /* Compute the initial step:
        step = 1.0 / sqrt(vecdot(d, d, n))
     */
    vec2norminv(&step, d, n);

    k = 1;
    end = 0;
    for (;;) {
        /* Store the current position and gradient vectors. */
        veccpy(xp, x, n);
        veccpy(gp, g, n);

        /* Search for an optimal step. */
        if (param.orthantwise_c == 0.) {
            ls = linesearch(n, x, &fx, g, d, &step, xp, gp, w, &cd, &param);
        } else {
            ls = linesearch(n, x, &fx, g, d, &step, xp, pg, w, &cd, &param);
            owlqn_pseudo_gradient(
                pg, x, g, n,
                param.orthantwise_c, param.orthantwise_start, param.orthantwise_end
                );
        }
        if (ls < 0) {
            /* Revert to the previous point. */
            veccpy(x, xp, n);
            veccpy(g, gp, n);
            ret = ls;
            goto lbfgs_exit;
        }

        /* Compute x and g norms. */
        vec2norm(&xnorm, x, n);
        if (param.orthantwise_c == 0.) {
            vec2norm(&gnorm, g, n);
        } else {
            vec2norm(&gnorm, pg, n);
        }

        /* Report the progress. */
        if (cd.proc_progress) {
            if ((ret = cd.proc_progress(cd.instance, x, g, fx, xnorm, gnorm, step, cd.n, k, ls))) {
                goto lbfgs_exit;
            }
        }

        /*
            Convergence test.
            The criterion is given by the following formula:
                |g(x)| / \max(1, |x|) < \epsilon
         */
        if (xnorm < 1.0) xnorm = 1.0;
        if (gnorm / xnorm <= param.epsilon) {
            /* Convergence. */
            ret = LBFGS_SUCCESS;
            break;
        }

        /*
            Test for stopping criterion.
            The criterion is given by the following formula:
                (f(past_x) - f(x)) / f(x) < \delta
         */
        if (pf != NULL) {
            /* We don't test the stopping criterion while k < past. */
            if (param.past <= k) {
                /* Compute the relative improvement from the past. */
                rate = (pf[k % param.past] - fx) / fx;

                /* The stopping criterion. */
                if (rate < param.delta) {
                    ret = LBFGS_STOP;
                    break;
                }
            }

            /* Store the current value of the objective function. */
            pf[k % param.past] = fx;
        }

        if (param.max_iterations != 0 && param.max_iterations < k+1) {
            /* Maximum number of iterations. */
            ret = LBFGSERR_MAXIMUMITERATION;
            break;
        }

        /*
            Update vectors s and y:
                s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
                y_{k+1} = g_{k+1} - g_{k}.
         */
        it = &lm[end];
        vecdiff(it->s, x, xp, n);
        vecdiff(it->y, g, gp, n);

        /*
            Compute scalars ys and yy:
                ys = y^t \cdot s = 1 / \rho.
                yy = y^t \cdot y.
            Notice that yy is used for scaling the hessian matrix H_0 (Cholesky factor).
         */
        vecdot(&ys, it->y, it->s, n);
        vecdot(&yy, it->y, it->y, n);
        it->ys = ys;

        /*
            Recursive formula to compute dir = -(H \cdot g).
                This is described in page 779 of:
                Jorge Nocedal.
                Updating Quasi-Newton Matrices with Limited Storage.
                Mathematics of Computation, Vol. 35, No. 151,
                pp. 773--782, 1980.
         */
        bound = (m <= k) ? m : k;
        ++k;
        end = (end + 1) % m;

        /* Compute the steepest direction. */
        if (param.orthantwise_c == 0.) {
            /* Compute the negative of gradients. */
            vecncpy(d, g, n);
        } else {
            vecncpy(d, pg, n);
        }

        j = end;
        for (i = 0;i < bound;++i) {
            j = (j + m - 1) % m;    /* if (--j == -1) j = m-1; */
            it = &lm[j];
            /* \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}. */
            vecdot(&it->alpha, it->s, d, n);
            it->alpha /= it->ys;
            /* q_{i} = q_{i+1} - \alpha_{i} y_{i}. */
            vecadd(d, it->y, -it->alpha, n);
        }

        vecscale(d, ys / yy, n);

        for (i = 0;i < bound;++i) {
            it = &lm[j];
            /* \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}. */
            vecdot(&beta, it->y, d, n);
            beta /= it->ys;
            /* \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}. */
            vecadd(d, it->s, it->alpha - beta, n);
            j = (j + 1) % m;        /* if (++j == m) j = 0; */
        }

        /*
            Constrain the search direction for orthant-wise updates.
         */
        if (param.orthantwise_c != 0.) {
            for (i = param.orthantwise_start;i < param.orthantwise_end;++i) {
                if (d[i] * pg[i] >= 0) {
                    d[i] = 0;
                }
            }
        }

        /*
            Now the search direction d is ready. We try step = 1 first.
         */
        step = 1.0;
    }

lbfgs_exit:
    /* Return the final value of the objective function. */
    if (ptr_fx != NULL) {
        *ptr_fx = fx;
    }

    vecfree(pf);

    /* Free memory blocks used by this function. */
    if (lm != NULL) {
        for (i = 0;i < m;++i) {
            vecfree(lm[i].s);
            vecfree(lm[i].y);
        }
        vecfree(lm);
    }
    vecfree(pg);
    vecfree(w);
    vecfree(d);
    vecfree(gp);
    vecfree(g);
    vecfree(xp);

    return ret;
}



static int line_search_backtracking(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *f,
    lbfgsfloatval_t *g,
    lbfgsfloatval_t *s,
    lbfgsfloatval_t *stp,
    const lbfgsfloatval_t* xp,
    const lbfgsfloatval_t* gp,
    lbfgsfloatval_t *wp,
    callback_data_t *cd,
    const lbfgs_parameter_t *param
    )
{
    int count = 0;
    lbfgsfloatval_t width, dg;
    lbfgsfloatval_t finit, dginit = 0., dgtest;
    const lbfgsfloatval_t dec = 0.5, inc = 2.1;

    /* Check the input parameters for errors. */
    if (*stp <= 0.) {
        return LBFGSERR_INVALIDPARAMETERS;
    }

    /* Compute the initial gradient in the search direction. */
    vecdot(&dginit, g, s, n);

    /* Make sure that s points to a descent direction. */
    if (0 < dginit) {
        return LBFGSERR_INCREASEGRADIENT;
    }

    /* The initial value of the objective function. */
    finit = *f;
    dgtest = param->ftol * dginit;

    for (;;) {
        veccpy(x, xp, n);
        vecadd(x, s, *stp, n);

        /* Evaluate the function and gradient values. */
        *f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);

        ++count;

        if (*f > finit + *stp * dgtest) {
            width = dec;
        } else {
            /* The sufficient decrease condition (Armijo condition). */
            if (param->linesearch == LBFGS_LINESEARCH_BACKTRACKING_ARMIJO) {
                /* Exit with the Armijo condition. */
                return count;
	        }

	        /* Check the Wolfe condition. */
	        vecdot(&dg, g, s, n);
	        if (dg < param->wolfe * dginit) {
    		    width = inc;
	        } else {
		        if(param->linesearch == LBFGS_LINESEARCH_BACKTRACKING_WOLFE) {
		            /* Exit with the regular Wolfe condition. */
		            return count;
		        }

		        /* Check the strong Wolfe condition. */
		        if(dg > -param->wolfe * dginit) {
		            width = dec;
		        } else {
		            /* Exit with the strong Wolfe condition. */
		            return count;
		        }
            }
        }

        if (*stp < param->min_step) {
            /* The step is the minimum value. */
            return LBFGSERR_MINIMUMSTEP;
        }
        if (*stp > param->max_step) {
            /* The step is the maximum value. */
            return LBFGSERR_MAXIMUMSTEP;
        }
        if (param->max_linesearch <= count) {
            /* Maximum number of iteration. */
            return LBFGSERR_MAXIMUMLINESEARCH;
        }

        (*stp) *= width;
    }
}



static int line_search_backtracking_owlqn(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *f,
    lbfgsfloatval_t *g,
    lbfgsfloatval_t *s,
    lbfgsfloatval_t *stp,
    const lbfgsfloatval_t* xp,
    const lbfgsfloatval_t* gp,
    lbfgsfloatval_t *wp,
    callback_data_t *cd,
    const lbfgs_parameter_t *param
    )
{
    int i, count = 0;
    lbfgsfloatval_t width = 0.5, norm = 0.;
    lbfgsfloatval_t finit = *f, dgtest;

    /* Check the input parameters for errors. */
    if (*stp <= 0.) {
        return LBFGSERR_INVALIDPARAMETERS;
    }

    /* Choose the orthant for the new point. */
    for (i = 0;i < n;++i) {
        wp[i] = (xp[i] == 0.) ? -gp[i] : xp[i];
    }

    for (;;) {
        /* Update the current point. */
        veccpy(x, xp, n);
        vecadd(x, s, *stp, n);

        /* The current point is projected onto the orthant. */
        owlqn_project(x, wp, param->orthantwise_start, param->orthantwise_end);

        /* Evaluate the function and gradient values. */
        *f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);

        /* Compute the L1 norm of the variables and add it to the object value. */
        norm = owlqn_x1norm(x, param->orthantwise_start, param->orthantwise_end);
        *f += norm * param->orthantwise_c;

        ++count;

        dgtest = 0.;
        for (i = 0;i < n;++i) {
            dgtest += (x[i] - xp[i]) * gp[i];
        }

        if (*f <= finit + param->ftol * dgtest) {
            /* The sufficient decrease condition. */
            return count;
        }

        if (*stp < param->min_step) {
            /* The step is the minimum value. */
            return LBFGSERR_MINIMUMSTEP;
        }
        if (*stp > param->max_step) {
            /* The step is the maximum value. */
            return LBFGSERR_MAXIMUMSTEP;
        }
        if (param->max_linesearch <= count) {
            /* Maximum number of iteration. */
            return LBFGSERR_MAXIMUMLINESEARCH;
        }

        (*stp) *= width;
    }
}



static int line_search_morethuente(
    int n,
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *f,
    lbfgsfloatval_t *g,
    lbfgsfloatval_t *s,
    lbfgsfloatval_t *stp,
    const lbfgsfloatval_t* xp,
    const lbfgsfloatval_t* gp,
    lbfgsfloatval_t *wa,
    callback_data_t *cd,
    const lbfgs_parameter_t *param
    )
{
    int count = 0;
    int brackt, stage1, uinfo = 0;
    lbfgsfloatval_t dg;
    lbfgsfloatval_t stx, fx, dgx;
    lbfgsfloatval_t sty, fy, dgy;
    lbfgsfloatval_t fxm, dgxm, fym, dgym, fm, dgm;
    lbfgsfloatval_t finit, ftest1, dginit, dgtest;
    lbfgsfloatval_t width, prev_width;
    lbfgsfloatval_t stmin, stmax;

    /* Check the input parameters for errors. */
    if (*stp <= 0.) {
        return LBFGSERR_INVALIDPARAMETERS;
    }

    /* Compute the initial gradient in the search direction. */
    vecdot(&dginit, g, s, n);

    /* Make sure that s points to a descent direction. */
    if (0 < dginit) {
        return LBFGSERR_INCREASEGRADIENT;
    }

    /* Initialize local variables. */
    brackt = 0;
    stage1 = 1;
    finit = *f;
    dgtest = param->ftol * dginit;
    width = param->max_step - param->min_step;
    prev_width = 2.0 * width;

    /*
        The variables stx, fx, dgx contain the values of the step,
        function, and directional derivative at the best step.
        The variables sty, fy, dgy contain the value of the step,
        function, and derivative at the other endpoint of
        the interval of uncertainty.
        The variables stp, f, dg contain the values of the step,
        function, and derivative at the current step.
    */
    stx = sty = 0.;
    fx = fy = finit;
    dgx = dgy = dginit;

    for (;;) {
        /*
            Set the minimum and maximum steps to correspond to the
            present interval of uncertainty.
         */
        if (brackt) {
            stmin = min2(stx, sty);
            stmax = max2(stx, sty);
        } else {
            stmin = stx;
            stmax = *stp + 4.0 * (*stp - stx);
        }

        /* Clip the step in the range of [stpmin, stpmax]. */
        if (*stp < param->min_step) *stp = param->min_step;
        if (param->max_step < *stp) *stp = param->max_step;

        /*
            If an unusual termination is to occur then let
            stp be the lowest point obtained so far.
         */
        if ((brackt && ((*stp <= stmin || stmax <= *stp) || param->max_linesearch <= count + 1 || uinfo != 0)) || (brackt && (stmax - stmin <= param->xtol * stmax))) {
            *stp = stx;
        }

        /*
            Compute the current value of x:
                x <- x + (*stp) * s.
         */
        veccpy(x, xp, n);
        vecadd(x, s, *stp, n);

        /* Evaluate the function and gradient values. */
        *f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
        vecdot(&dg, g, s, n);

        ftest1 = finit + *stp * dgtest;
        ++count;

        /* Test for errors and convergence. */
        if (brackt && ((*stp <= stmin || stmax <= *stp) || uinfo != 0)) {
            /* Rounding errors prevent further progress. */
            return LBFGSERR_ROUNDING_ERROR;
        }
        if (*stp == param->max_step && *f <= ftest1 && dg <= dgtest) {
            /* The step is the maximum value. */
            return LBFGSERR_MAXIMUMSTEP;
        }
        if (*stp == param->min_step && (ftest1 < *f || dgtest <= dg)) {
            /* The step is the minimum value. */
            return LBFGSERR_MINIMUMSTEP;
        }
        if (brackt && (stmax - stmin) <= param->xtol * stmax) {
            /* Relative width of the interval of uncertainty is at most xtol. */
            return LBFGSERR_WIDTHTOOSMALL;
        }
        if (param->max_linesearch <= count) {
            /* Maximum number of iteration. */
            return LBFGSERR_MAXIMUMLINESEARCH;
        }
        if (*f <= ftest1 && fabs(dg) <= param->gtol * (-dginit)) {
            /* The sufficient decrease condition and the directional derivative condition hold. */
            return count;
        }

        /*
            In the first stage we seek a step for which the modified
            function has a nonpositive value and nonnegative derivative.
         */
        if (stage1 && *f <= ftest1 && min2(param->ftol, param->gtol) * dginit <= dg) {
            stage1 = 0;
        }

        /*
            A modified function is used to predict the step only if
            we have not obtained a step for which the modified
            function has a nonpositive function value and nonnegative
            derivative, and if a lower function value has been
            obtained but the decrease is not sufficient.
         */
        if (stage1 && ftest1 < *f && *f <= fx) {
            /* Define the modified function and derivative values. */
            fm = *f - *stp * dgtest;
            fxm = fx - stx * dgtest;
            fym = fy - sty * dgtest;
            dgm = dg - dgtest;
            dgxm = dgx - dgtest;
            dgym = dgy - dgtest;

            /*
                Call update_trial_interval() to update the interval of
                uncertainty and to compute the new step.
             */
            uinfo = update_trial_interval(
                &stx, &fxm, &dgxm,
                &sty, &fym, &dgym,
                stp, &fm, &dgm,
                stmin, stmax, &brackt
                );

            /* Reset the function and gradient values for f. */
            fx = fxm + stx * dgtest;
            fy = fym + sty * dgtest;
            dgx = dgxm + dgtest;
            dgy = dgym + dgtest;
        } else {
            /*
                Call update_trial_interval() to update the interval of
                uncertainty and to compute the new step.
             */
            uinfo = update_trial_interval(
                &stx, &fx, &dgx,
                &sty, &fy, &dgy,
                stp, f, &dg,
                stmin, stmax, &brackt
                );
        }

        /*
            Force a sufficient decrease in the interval of uncertainty.
         */
        if (brackt) {
            if (0.66 * prev_width <= fabs(sty - stx)) {
                *stp = stx + 0.5 * (sty - stx);
            }
            prev_width = width;
            width = fabs(sty - stx);
        }
    }

    return LBFGSERR_LOGICERROR;
}



/**
 * Define the local variables for computing minimizers.
 */
#define USES_MINIMIZER \
    lbfgsfloatval_t a, d, gamma, theta, p, q, r, s;

/**
 * Find a minimizer of an interpolated cubic function.
 *  @param  cm      The minimizer of the interpolated cubic.
 *  @param  u       The value of one point, u.
 *  @param  fu      The value of f(u).
 *  @param  du      The value of f'(u).
 *  @param  v       The value of another point, v.
 *  @param  fv      The value of f(v).
 *  @param  du      The value of f'(v).
 */
#define CUBIC_MINIMIZER(cm, u, fu, du, v, fv, dv) \
    d = (v) - (u); \
    theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
    p = fabs(theta); \
    q = fabs(du); \
    r = fabs(dv); \
    s = max3(p, q, r); \
    /* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
    a = theta / s; \
    gamma = s * sqrt(a * a - ((du) / s) * ((dv) / s)); \
    if ((v) < (u)) gamma = -gamma; \
    p = gamma - (du) + theta; \
    q = gamma - (du) + gamma + (dv); \
    r = p / q; \
    (cm) = (u) + r * d;

/**
 * Find a minimizer of an interpolated cubic function.
 *  @param  cm      The minimizer of the interpolated cubic.
 *  @param  u       The value of one point, u.
 *  @param  fu      The value of f(u).
 *  @param  du      The value of f'(u).
 *  @param  v       The value of another point, v.
 *  @param  fv      The value of f(v).
 *  @param  du      The value of f'(v).
 *  @param  xmin    The maximum value.
 *  @param  xmin    The minimum value.
 */
#define CUBIC_MINIMIZER2(cm, u, fu, du, v, fv, dv, xmin, xmax) \
    d = (v) - (u); \
    theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
    p = fabs(theta); \
    q = fabs(du); \
    r = fabs(dv); \
    s = max3(p, q, r); \
    /* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
    a = theta / s; \
    gamma = s * sqrt(max2(0, a * a - ((du) / s) * ((dv) / s))); \
    if ((u) < (v)) gamma = -gamma; \
    p = gamma - (dv) + theta; \
    q = gamma - (dv) + gamma + (du); \
    r = p / q; \
    if (r < 0. && gamma != 0.) { \
        (cm) = (v) - r * d; \
    } else if (a < 0) { \
        (cm) = (xmax); \
    } else { \
        (cm) = (xmin); \
    }

/**
 * Find a minimizer of an interpolated quadratic function.
 *  @param  qm      The minimizer of the interpolated quadratic.
 *  @param  u       The value of one point, u.
 *  @param  fu      The value of f(u).
 *  @param  du      The value of f'(u).
 *  @param  v       The value of another point, v.
 *  @param  fv      The value of f(v).
 */
#define QUARD_MINIMIZER(qm, u, fu, du, v, fv) \
    a = (v) - (u); \
    (qm) = (u) + (du) / (((fu) - (fv)) / a + (du)) / 2 * a;

/**
 * Find a minimizer of an interpolated quadratic function.
 *  @param  qm      The minimizer of the interpolated quadratic.
 *  @param  u       The value of one point, u.
 *  @param  du      The value of f'(u).
 *  @param  v       The value of another point, v.
 *  @param  dv      The value of f'(v).
 */
#define QUARD_MINIMIZER2(qm, u, du, v, dv) \
    a = (u) - (v); \
    (qm) = (v) + (dv) / ((dv) - (du)) * a;

/**
 * Update a safeguarded trial value and interval for line search.
 *
 *  The parameter x represents the step with the least function value.
 *  The parameter t represents the current step. This function assumes
 *  that the derivative at the point of x in the direction of the step.
 *  If the bracket is set to true, the minimizer has been bracketed in
 *  an interval of uncertainty with endpoints between x and y.
 *
 *  @param  x       The pointer to the value of one endpoint.
 *  @param  fx      The pointer to the value of f(x).
 *  @param  dx      The pointer to the value of f'(x).
 *  @param  y       The pointer to the value of another endpoint.
 *  @param  fy      The pointer to the value of f(y).
 *  @param  dy      The pointer to the value of f'(y).
 *  @param  t       The pointer to the value of the trial value, t.
 *  @param  ft      The pointer to the value of f(t).
 *  @param  dt      The pointer to the value of f'(t).
 *  @param  tmin    The minimum value for the trial value, t.
 *  @param  tmax    The maximum value for the trial value, t.
 *  @param  brackt  The pointer to the predicate if the trial value is
 *                  bracketed.
 *  @retval int     Status value. Zero indicates a normal termination.
 *  
 *  @see
 *      Jorge J. More and David J. Thuente. Line search algorithm with
 *      guaranteed sufficient decrease. ACM Transactions on Mathematical
 *      Software (TOMS), Vol 20, No 3, pp. 286-307, 1994.
 */
static int update_trial_interval(
    lbfgsfloatval_t *x,
    lbfgsfloatval_t *fx,
    lbfgsfloatval_t *dx,
    lbfgsfloatval_t *y,
    lbfgsfloatval_t *fy,
    lbfgsfloatval_t *dy,
    lbfgsfloatval_t *t,
    lbfgsfloatval_t *ft,
    lbfgsfloatval_t *dt,
    const lbfgsfloatval_t tmin,
    const lbfgsfloatval_t tmax,
    int *brackt
    )
{
    int bound;
    int dsign = fsigndiff(dt, dx);
    lbfgsfloatval_t mc; /* minimizer of an interpolated cubic. */
    lbfgsfloatval_t mq; /* minimizer of an interpolated quadratic. */
    lbfgsfloatval_t newt;   /* new trial value. */
    USES_MINIMIZER;     /* for CUBIC_MINIMIZER and QUARD_MINIMIZER. */

    /* Check the input parameters for errors. */
    if (*brackt) {
        if (*t <= min2(*x, *y) || max2(*x, *y) <= *t) {
            /* The trival value t is out of the interval. */
            return LBFGSERR_OUTOFINTERVAL;
        }
        if (0. <= *dx * (*t - *x)) {
            /* The function must decrease from x. */
            return LBFGSERR_INCREASEGRADIENT;
        }
        if (tmax < tmin) {
            /* Incorrect tmin and tmax specified. */
            return LBFGSERR_INCORRECT_TMINMAX;
        }
    }

    /*
        Trial value selection.
     */
    if (*fx < *ft) {
        /*
            Case 1: a higher function value.
            The minimum is brackt. If the cubic minimizer is closer
            to x than the quadratic one, the cubic one is taken, else
            the average of the minimizers is taken.
         */
        *brackt = 1;
        bound = 1;
        CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
        QUARD_MINIMIZER(mq, *x, *fx, *dx, *t, *ft);
        if (fabs(mc - *x) < fabs(mq - *x)) {
            newt = mc;
        } else {
            newt = mc + 0.5 * (mq - mc);
        }
    } else if (dsign) {
        /*
            Case 2: a lower function value and derivatives of
            opposite sign. The minimum is brackt. If the cubic
            minimizer is closer to x than the quadratic (secant) one,
            the cubic one is taken, else the quadratic one is taken.
         */
        *brackt = 1;
        bound = 0;
        CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
        QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
        if (fabs(mc - *t) > fabs(mq - *t)) {
            newt = mc;
        } else {
            newt = mq;
        }
    } else if (fabs(*dt) < fabs(*dx)) {
        /*
            Case 3: a lower function value, derivatives of the
            same sign, and the magnitude of the derivative decreases.
            The cubic minimizer is only used if the cubic tends to
            infinity in the direction of the minimizer or if the minimum
            of the cubic is beyond t. Otherwise the cubic minimizer is
            defined to be either tmin or tmax. The quadratic (secant)
            minimizer is also computed and if the minimum is brackt
            then the the minimizer closest to x is taken, else the one
            farthest away is taken.
         */
        bound = 1;
        CUBIC_MINIMIZER2(mc, *x, *fx, *dx, *t, *ft, *dt, tmin, tmax);
        QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
        if (*brackt) {
            if (fabs(*t - mc) < fabs(*t - mq)) {
                newt = mc;
            } else {
                newt = mq;
            }
        } else {
            if (fabs(*t - mc) > fabs(*t - mq)) {
                newt = mc;
            } else {
                newt = mq;
            }
        }
    } else {
        /*
            Case 4: a lower function value, derivatives of the
            same sign, and the magnitude of the derivative does
            not decrease. If the minimum is not brackt, the step
            is either tmin or tmax, else the cubic minimizer is taken.
         */
        bound = 0;
        if (*brackt) {
            CUBIC_MINIMIZER(newt, *t, *ft, *dt, *y, *fy, *dy);
        } else if (*x < *t) {
            newt = tmax;
        } else {
            newt = tmin;
        }
    }

    /*
        Update the interval of uncertainty. This update does not
        depend on the new step or the case analysis above.

        - Case a: if f(x) < f(t),
            x <- x, y <- t.
        - Case b: if f(t) <= f(x) && f'(t)*f'(x) > 0,
            x <- t, y <- y.
        - Case c: if f(t) <= f(x) && f'(t)*f'(x) < 0, 
            x <- t, y <- x.
     */
    if (*fx < *ft) {
        /* Case a */
        *y = *t;
        *fy = *ft;
        *dy = *dt;
    } else {
        /* Case c */
        if (dsign) {
            *y = *x;
            *fy = *fx;
            *dy = *dx;
        }
        /* Cases b and c */
        *x = *t;
        *fx = *ft;
        *dx = *dt;
    }

    /* Clip the new trial value in [tmin, tmax]. */
    if (tmax < newt) newt = tmax;
    if (newt < tmin) newt = tmin;

    /*
        Redefine the new trial value if it is close to the upper bound
        of the interval.
     */
    if (*brackt && bound) {
        mq = *x + 0.66 * (*y - *x);
        if (*x < *y) {
            if (mq < newt) newt = mq;
        } else {
            if (newt < mq) newt = mq;
        }
    }

    /* Return the new trial value. */
    *t = newt;
    return 0;
}





static lbfgsfloatval_t owlqn_x1norm(
    const lbfgsfloatval_t* x,
    const int start,
    const int n
    )
{
    int i;
    lbfgsfloatval_t norm = 0.;

    for (i = start;i < n;++i) {
        norm += fabs(x[i]);
    }

    return norm;
}

static void owlqn_pseudo_gradient(
    lbfgsfloatval_t* pg,
    const lbfgsfloatval_t* x,
    const lbfgsfloatval_t* g,
    const int n,
    const lbfgsfloatval_t c,
    const int start,
    const int end
    )
{
    int i;

    /* Compute the negative of gradients. */
    for (i = 0;i < start;++i) {
        pg[i] = g[i];
    }

    /* Compute the psuedo-gradients. */
    for (i = start;i < end;++i) {
        if (x[i] < 0.) {
            /* Differentiable. */
            pg[i] = g[i] - c;
        } else if (0. < x[i]) {
            /* Differentiable. */
            pg[i] = g[i] + c;
        } else {
            if (g[i] < -c) {
                /* Take the right partial derivative. */
                pg[i] = g[i] + c;
            } else if (c < g[i]) {
                /* Take the left partial derivative. */
                pg[i] = g[i] - c;
            } else {
                pg[i] = 0.;
            }
        }
    }

    for (i = end;i < n;++i) {
        pg[i] = g[i];
    }
}

static void owlqn_project(
    lbfgsfloatval_t* d,
    const lbfgsfloatval_t* sign,
    const int start,
    const int end
    )
{
    int i;

    for (i = start;i < end;++i) {
        if (d[i] * sign[i] <= 0) {
            d[i] = 0;
        }
    }
}