1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#ifndef _DTRAIN_PAIRSAMPLING_H_
#define _DTRAIN_PAIRSAMPLING_H_
namespace dtrain
{
bool
accept_pair(score_t a, score_t b, score_t threshold)
{
if (fabs(a - b) < threshold) return false;
return true;
}
bool
cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b)
{
return a.score > b.score;
}
inline void
all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float _unused=1)
{
sort(s->begin(), s->end(), cmp_hyp_by_score_d);
unsigned sz = s->size();
bool b = false;
unsigned count = 0;
for (unsigned i = 0; i < sz-1; i++) {
for (unsigned j = i+1; j < sz; j++) {
if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
if (threshold > 0) {
if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
training.push_back(make_pair((*s)[i], (*s)[j]));
} else {
if ((*s)[i].score != (*s)[j].score)
training.push_back(make_pair((*s)[i], (*s)[j]));
}
if (++count == max) {
b = true;
break;
}
}
if (b) break;
}
}
/*
* multipartite ranking
* sort (descending) by bleu
* compare top X to middle Y and low X
* cmp middle Y to low X
*/
inline void
partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float hi_lo)
{
unsigned sz = s->size();
if (sz < 2) return;
sort(s->begin(), s->end(), cmp_hyp_by_score_d);
unsigned sep = round(sz*hi_lo);
unsigned sep_hi = sep;
if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi;
else sep_hi = 1;
bool b = false;
unsigned count = 0;
for (unsigned i = 0; i < sep_hi; i++) {
for (unsigned j = sep_hi; j < sz; j++) {
if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
if (threshold > 0) {
if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
training.push_back(make_pair((*s)[i], (*s)[j]));
} else {
if ((*s)[i].score != (*s)[j].score)
training.push_back(make_pair((*s)[i], (*s)[j]));
}
if (++count == max) {
b = true;
break;
}
}
if (b) break;
}
unsigned sep_lo = sz-sep;
while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo;
for (unsigned i = sep_hi; i < sep_lo; i++) {
for (unsigned j = sep_lo; j < sz; j++) {
if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
if (threshold > 0) {
if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
training.push_back(make_pair((*s)[i], (*s)[j]));
} else {
if ((*s)[i].score != (*s)[j].score)
training.push_back(make_pair((*s)[i], (*s)[j]));
}
if (++count == max) return;
}
}
}
/*
* pair sampling as in
* 'Tuning as Ranking' (Hopkins & May, 2011)
* count = max (5000)
* threshold = 5% BLEU (0.05 for param 3)
* cut = top 10%
*/
bool
_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b)
{
return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score));
}
inline void
PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0)
{
sort(s->begin(), s->end(), cmp_hyp_by_score_d);
unsigned max_count = max, count = 0, sz = s->size();
bool b = false;
for (unsigned i = 0; i < sz-1; i++) {
for (unsigned j = i+1; j < sz; j++) {
if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) {
training.push_back(make_pair((*s)[i], (*s)[j]));
if (++count == max_count) {
b = true;
break;
}
}
}
if (b) break;
}
if (training.size() > max/10) {
sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d);
training.erase(training.begin()+(max/10), training.end());
}
return;
}
} // namespace
#endif
|