1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
#ifndef _DTRAIN_NET_INTERFACE_H_
#define _DTRAIN_NET_INTERFACE_H_
#include "dtrain.h"
namespace dtrain
{
inline void
weightsToJson(SparseVector<weight_t>& w, ostringstream& os)
{
vector<string> strs;
for (typename SparseVector<weight_t>::iterator it=w.begin(),e=w.end(); it!=e; ++it) {
ostringstream a;
a << "\"" << FD::Convert(it->first) << "\":" << it->second;
strs.push_back(a.str());
}
for (vector<string>::const_iterator it=strs.begin(); it!=strs.end(); it++) {
os << *it;
if ((it+1) != strs.end())
os << ",";
os << endl;
}
}
template<typename T>
inline void
vectorAsString(SparseVector<T>& v, ostringstream& os)
{
SparseVector<weight_t>::iterator it = v.begin();
for (; it != v.end(); ++it) {
os << FD::Convert(it->first) << "=" << it->second;
auto peek = it;
if (++peek != v.end())
os << " ";
}
}
template<typename T>
inline void
updateVectorFromString(string& s, SparseVector<T>& v)
{
string buf;
istringstream ss;
while (ss >> buf) {
size_t p = buf.find_last_of("=");
istringstream c(buf.substr(p+1,buf.size()));
weight_t val;
c >> val;
v[FD::Convert(buf.substr(0,p))] = val;
}
}
bool
dtrain_net_init(int argc, char** argv, po::variables_map* conf)
{
po::options_description ini("Configuration File Options");
ini.add_options()
("decoder_conf,C", po::value<string>(), "configuration file for decoder")
("k", po::value<size_t>()->default_value(100), "size of kbest list")
("N", po::value<size_t>()->default_value(4), "N for BLEU approximation")
("margin,m", po::value<weight_t>()->default_value(0.), "margin for margin perceptron")
("output,o", po::value<string>()->default_value(""), "final weights file")
("input_weights,w", po::value<string>(), "input weights file")
("learning_rate,l", po::value<weight_t>()->default_value(0.001), "learning rate")
("learning_rate_sparse,l", po::value<weight_t>()->default_value(0.00001), "learning rate for sparse features")
("output_derivation,E", po::bool_switch()->default_value(false), "output derivation, not viterbi str")
("output_rules,R", po::bool_switch()->default_value(false), "also output rules")
("dense_features,D", po::value<string>()->default_value("EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV Shape_S01111_T11011 Shape_S11110_T11011 Shape_S11100_T11000 Shape_S01110_T01110 Shape_S01111_T01111 Shape_S01100_T11000 Shape_S10000_T10000 Shape_S11100_T11100 Shape_S11110_T11110 Shape_S11110_T11010 Shape_S01100_T11100 Shape_S01000_T01000 Shape_S01010_T01010 Shape_S01111_T01011 Shape_S01100_T01100 Shape_S01110_T11010 Shape_S11000_T11000 Shape_S11000_T01100 IsSupportedOnline NewRule KnownRule OOVFix"),
"dense features")
("debug_output,d", po::value<string>()->default_value(""), "file for debug output");
po::options_description cl("Command Line Options");
cl.add_options()
("conf,c", po::value<string>(), "dtrain configuration file")
("addr,a", po::value<string>(), "address of master");
cl.add(ini);
po::store(parse_command_line(argc, argv, cl), *conf);
if (conf->count("conf")) {
ifstream f((*conf)["conf"].as<string>().c_str());
po::store(po::parse_config_file(f, ini), *conf);
}
po::notify(*conf);
if (!conf->count("decoder_conf")) {
cerr << "Missing decoder configuration. Exiting." << endl;
return false;
}
if (!conf->count("addr")) {
cerr << "No master address given! Exiting." << endl;
return false;
}
return true;
}
} // namespace
#endif
|