1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
#include "dtrain_net_interface.h"
#include "sample_net_interface.h"
#include "score_net_interface.h"
#include "update.h"
#include <nanomsg/nn.h>
#include <nanomsg/pair.h>
#include "nn.hpp"
using namespace dtrain;
int
main(int argc, char** argv)
{
// get configuration
po::variables_map conf;
if (!dtrain_net_init(argc, argv, &conf))
exit(1); // something is wrong
const size_t k = conf["k"].as<size_t>();
const size_t N = conf["N"].as<size_t>();
weight_t eta = conf["learning_rate"].as<weight_t>();
const weight_t margin = conf["margin"].as<weight_t>();
const string master_addr = conf["addr"].as<string>();
const string output_fn = conf["output"].as<string>();
const string debug_fn = conf["debug_output"].as<string>();
// setup decoder
register_feature_functions();
SetSilent(true);
ReadFile f(conf["decoder_conf"].as<string>());
Decoder decoder(f.stream());
ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N));
// weights
vector<weight_t>& decoder_weights = decoder.CurrentWeightVector();
SparseVector<weight_t> lambdas, w_average;
if (conf.count("input_weights")) {
Weights::InitFromFile(conf["input_weights"].as<string>(), &decoder_weights);
Weights::InitSparseVector(decoder_weights, &lambdas);
}
cerr << _p4;
// output configuration
cerr << "dtrain_net_interface" << endl << "Parameters:" << endl;
cerr << setw(25) << "k " << k << endl;
cerr << setw(25) << "N " << N << endl;
cerr << setw(25) << "margin " << margin << endl;
cerr << setw(25) << "decoder conf " << "'"
<< conf["decoder_conf"].as<string>() << "'" << endl;
cerr << setw(25) << "output " << output_fn << endl;
// setup socket
nn::socket sock(AF_SP, NN_PAIR);
sock.bind(master_addr.c_str());
string hello = "hello";
sock.send(hello.c_str(), hello.size()+1, 0);
// debug
ostringstream debug_output;
size_t i = 0;
while(true)
{
// debug --
debug_output.str(string());
debug_output.clear();
debug_output << "{" << endl;
// -- debug
char *buf = NULL;
string source;
vector<Ngrams> refs;
vector<size_t> rsz;
bool next = true;
size_t sz = sock.recv(&buf, NN_MSG, 0);
if (buf) {
const string in(buf, buf+sz);
nn::freemsg(buf);
cerr << "[dtrain] got input '" << in << "'" << endl;
if (in == "shutdown") { // shut down
cerr << "[dtrain] got shutdown signal" << endl;
next = false;
} else { // translate
vector<string> parts;
boost::algorithm::split_regex(parts, in, boost::regex(" \\|\\|\\| "));
if (parts[0] == "act:translate") {
cerr << "[dtrain] translating ..." << endl;
lambdas.init_vector(&decoder_weights);
observer->dont_score = true;
decoder.Decode(parts[1], observer);
observer->dont_score = false;
vector<ScoredHyp>* samples = observer->GetSamples();
ostringstream os;
cerr << "[dtrain] 1best features " << (*samples)[0].f << endl;
PrintWordIDVec((*samples)[0].w, os);
sock.send(os.str().c_str(), os.str().size()+1, 0);
cerr << "[dtrain] done translating, looping again" << endl;
continue;
} else { // learn
cerr << "[dtrain] learning ..." << endl;
source = parts[0];
// debug --
debug_output << "\"source\":\"" << source.substr(source.find_first_of(">")+1, source.find_last_of("<")-3) << "\"," << endl;
debug_output << "\"target\":\"" << parts[1] << "\"," << endl;
// -- debug
parts.erase(parts.begin());
for (auto s: parts) {
vector<WordID> r;
vector<string> toks;
boost::split(toks, s, boost::is_any_of(" "));
for (auto tok: toks)
r.push_back(TD::Convert(tok));
refs.emplace_back(MakeNgrams(r, N));
rsz.push_back(r.size());
}
}
}
}
if (!next)
break;
// decode
lambdas.init_vector(&decoder_weights);
observer->SetReference(refs, rsz);
decoder.Decode(source, observer);
vector<ScoredHyp>* samples = observer->GetSamples();
// debug --
debug_output << "\"1best\":\"";
PrintWordIDVec((*samples)[0].w, debug_output);
debug_output << "\"," << endl;
debug_output << "\"kbest\":[" << endl;
size_t h = 0;
for (auto s: *samples) {
debug_output << "\"" << s.gold << " ||| " << s.model << " ||| " << s.rank << " ||| ";
debug_output << "EgivenFCoherent=" << s.f[FD::Convert("EgivenFCoherent")] << " ";
debug_output << "SampleCountF=" << s.f[FD::Convert("CountEF")] << " ";
debug_output << "MaxLexFgivenE=" << s.f[FD::Convert("MaxLexFgivenE")] << " ";
debug_output << "MaxLexEgivenF=" << s.f[FD::Convert("MaxLexEgivenF")] << " ";
debug_output << "IsSingletonF=" << s.f[FD::Convert("IsSingletonF")] << " ";
debug_output << "IsSingletonFE=" << s.f[FD::Convert("IsSingletonFE")] << " ";
debug_output << "Glue=:" << s.f[FD::Convert("Glue")] << " ";
debug_output << "WordPenalty=" << s.f[FD::Convert("WordPenalty")] << " ";
debug_output << "PassThrough=" << s.f[FD::Convert("PassThrough")] << " ";
debug_output << "LanguageModel=" << s.f[FD::Convert("LanguageModel_OOV")];
debug_output << " ||| ";
PrintWordIDVec(s.w, debug_output);
h += 1;
debug_output << "\"";
if (h < samples->size()) {
debug_output << ",";
}
debug_output << endl;
}
debug_output << "]," << endl;
debug_output << "\"samples_size\":" << samples->size() << "," << endl;
debug_output << "\"weights_before\":{" << endl;
debug_output << "\"EgivenFCoherent\":" << lambdas[FD::Convert("EgivenFCoherent")] << "," << endl;
debug_output << "\"SampleCountF\":" << lambdas[FD::Convert("CountEF")] << "," << endl;
debug_output << "\"MaxLexFgivenE\":" << lambdas[FD::Convert("MaxLexFgivenE")] << "," << endl;
debug_output << "\"MaxLexEgivenF\":" << lambdas[FD::Convert("MaxLexEgivenF")] << "," << endl;
debug_output << "\"IsSingletonF\":" << lambdas[FD::Convert("IsSingletonF")] << "," << endl;
debug_output << "\"IsSingletonFE\":" << lambdas[FD::Convert("IsSingletonFE")] << "," << endl;
debug_output << "\"Glue\":" << lambdas[FD::Convert("Glue")] << "," << endl;
debug_output << "\"WordPenalty\":" << lambdas[FD::Convert("WordPenalty")] << "," << endl;
debug_output << "\"PassThrough\":" << lambdas[FD::Convert("PassThrough")] << "," << endl;
debug_output << "\"LanguageModel\":" << lambdas[FD::Convert("LanguageModel_OOV")] << endl;
debug_output << "}," << endl;
// -- debug
// get pairs and update
SparseVector<weight_t> updates;
size_t num_up = CollectUpdates(samples, updates, margin);
// debug --
debug_output << "\"num_up\":" << num_up << "," << endl;
debug_output << "\"updated_features\":" << updates.size() << "," << endl;
debug_output << "\"learning_rate\":" << eta << "," << endl;
debug_output << "\"best_match\":\"";
PrintWordIDVec((*samples)[0].w, debug_output);
debug_output << "\"," << endl;
debug_output << "\"best_match_score\":" << (*samples)[0].gold << "," << endl ;
// -- debug
lambdas.plus_eq_v_times_s(updates, eta);
i++;
// debug --
debug_output << "\"weights_after\":{" << endl;
debug_output << "\"EgivenFCoherent\":" << lambdas[FD::Convert("EgivenFCoherent")] << "," << endl;
debug_output << "\"SampleCountF\":" << lambdas[FD::Convert("CountEF")] << "," << endl;
debug_output << "\"MaxLexFgivenE\":" << lambdas[FD::Convert("MaxLexFgivenE")] << "," << endl;
debug_output << "\"MaxLexEgivenF\":" << lambdas[FD::Convert("MaxLexEgivenF")] << "," << endl;
debug_output << "\"IsSingletonF\":" << lambdas[FD::Convert("IsSingletonF")] << "," << endl;
debug_output << "\"IsSingletonFE\":" << lambdas[FD::Convert("IsSingletonFE")] << "," << endl;
debug_output << "\"Glue\":" << lambdas[FD::Convert("Glue")] << "," << endl;
debug_output << "\"WordPenalty\":" << lambdas[FD::Convert("WordPenalty")] << "," << endl;
debug_output << "\"PassThrough\":" << lambdas[FD::Convert("PassThrough")] << "," << endl;
debug_output << "\"LanguageModel\":" << lambdas[FD::Convert("LanguageModel_OOV")] << endl;
debug_output << "}" << endl;
debug_output << "}" << endl;
// -- debug
cerr << "[dtrain] done learning, looping again" << endl;
string done = "done";
sock.send(done.c_str(), done.size()+1, 0);
// debug --
WriteFile f(debug_fn);
*f << debug_output.str();
// -- debug
} // input loop
if (output_fn != "") {
cerr << "[dtrain] writing final weights to '" << output_fn << "'" << endl;
lambdas.init_vector(decoder_weights);
Weights::WriteToFile(output_fn, decoder_weights, true);
}
string shutdown = "off";
sock.send(shutdown.c_str(), shutdown.size()+1, 0);
cerr << "[dtrain] shutting down, goodbye" << endl;
return 0;
}
|