blob: 950a00360d1726f827252188a26206963dcef0ac (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
\documentclass{beamer}
\mode<presentation>
{
\usetheme{Boadilla}
\setbeamercovered{transparent}}
\usepackage[english]{babel}
\usepackage{times}
\usepackage{xcolor}
\usepackage{colortbl}
%\usepackage{subfigure}
%% for tables
\newcommand{\mc}{\multicolumn}
\newcommand{\lab}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\ind}[1]{{\fboxsep1pt\raisebox{-.5ex}{\fbox{{\tiny #1}}}}}
\newcommand{\IND}[1]{{\fboxsep1pt\raisebox{0ex}{\fbox{{\small #1}}}}}
\newcommand\production[2]{\ensuremath{\langle\mbox{#1}, \mbox{#2}\rangle}}
%% markup
\newcommand{\buffer}[1]{{\color{blue}\textbf{#1}}}
\newcommand{\pred}[1]{\code{#1}}
%% colors
\newcommand{\textred}[1]{\alert{#1}}
\newcommand{\textblue}[1]{\buffer{#1}}
\definecolor{tablecolor}{cmyk}{0,0.3,0.3,0}
\newcommand{\keytab}[1]{\mc{1}{>{\columncolor{tablecolor}}d}{#1}}
% rules
\newcommand{\psr}[2]{#1 $\rightarrow \langle $ #2 $\rangle$}
\newenvironment{unpacked_itemize}{
\begin{itemize}
\setlength{\itemsep}{10pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
}{\end{itemize}}
\newcommand{\condon}{\hspace{0pt} | \hspace{1pt}}
\definecolor{darkblue}{rgb}{0,0,0.6}
\newcommand{\blueexample}[1]{\textcolor{darkblue}{\rm #1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\ws}{\ensuremath{\vec{w}}}
\newcommand{\pu}{\ensuremath{P_0}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\by}{\mathbf{y}}
\newcommand\bleu{${B{\scriptstyle LEU}}$}
\title{Clustering of phrases and contexts}
\author{Trevor Cohn}
\date{\today}
\begin{document}
\begin{frame}[t]{Motivation}
%\vspace{1.0cm}
\begin{exampleblock}{Distributional Hypothesis}
\begin{quote}
\emph{Words that occur in the same contexts tend to have similar meanings}
\end{quote}
\hfill (Zellig Harris, 1954)
\end{exampleblock}
\vspace{3ex}
We will leverage this in a translation setting:
\begin{itemize}
\item Use the contexts to \alert{cluster} translation units into groups
\item Units in the same group expected to be semantically and syntactically similar
\item Then use these cluster labels to guide translation
\begin{itemize}
\item lexical selection: translating ambiguous source word/s
\item reordering: consistent syntactic patterns of reordering
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[t]{Monolingual Example}
Task: cluster words into their parts-of-speech. \\
\vspace{1ex}
Illustrate by starting with the word `deal' (noun or verb):
\only<1>{\includegraphics[width=\columnwidth]{deal_first.pdf} \\ Step 1: Find contexts for `deal'}
\only<2->{\includegraphics[width=\columnwidth]{deal.pdf} \\ Step 2: Find other words which occur in these contexts}
%\only<3>{\includegraphics[width=\columnwidth]{deal_more.pdf} \\ \ldots continue to expand}
\only<3>{
\vspace{1ex}
Notice that the instances of deal can be split into two connected sub-graphs:
\begin{itemize}
\item noun: the left two contexts ``a \ldots with'' and ``a \ldots that''
\item verb: the right two contexts ``to \ldots with'' and ``not \ldots with''
\item neighbouring words of these contexts share the same PoS
\end{itemize}
}
\end{frame}
\begin{frame}[t]{More Formally}
Construct a bipartite graph
\begin{itemize}
\item Nodes on the top layer denote word types (bilingual phrase pairs)
\item Nodes on the bottom layer denote context types (monlingual/bilingual words)
\item Edges connect words and their contexts
\end{itemize}
\includegraphics[width=\columnwidth]{bipartite.pdf}
\end{frame}
\begin{frame}[t]{Clustering}
Task is to cluster the graph into sub-graphs. Nodes in the sub-graphs should be
\begin{itemize}
\item strongly connected to one another
\item weakly connected to nodes outside the sub-graph
\item could formulate as either \emph{hard} or \emph{soft} clustering
\end{itemize}
Choose \alert{soft clustering} to allow for syntactic and semantic ambiguity
\centering
\includegraphics[width=0.7\columnwidth]{bipartite_lda.pdf}
\end{frame}
\begin{frame}[t]{Latent Dirichlet Allocation (LDA)}
LDA is a generative model which treats documents as bags of words
\begin{itemize}
\item each word is assign a \alert{topic} (cluster tag)
\item words are generated from a topic-specific multinomial
\item topics are \alert{tied} across a document using a Dirichlet prior
\item $\alpha < 1$ biases towards \alert{sparse} distributions, i.e., topic reuse
\item inferred $\theta_d$ describes a document and $\phi_t$ describes a topic
\end{itemize}
\vspace{-3ex}
\includegraphics[scale=0.55]{lda.pdf}
\end{frame}
\begin{frame}[t]{LDA over Contexts}
Generative story:
\begin{itemize}
\item for each word type $w$
\item for each of the $L$ contexts
\item first we draw a topic $t$, then generate the context $\vec{c}$ given the topic
\item the Dirichlet prior ties the topics for each $w$
\item we're primarily interested in the learnt $\theta$ values
\end{itemize}
\includegraphics[scale=0.4]{context_lda.pdf}
\end{frame}
\end{document}
|