summaryrefslogtreecommitdiff
path: root/gi/posterior-regularisation/invert.hh
blob: d06356e95ee434fa79859f72a399eb85985f5b07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// The following code inverts the matrix input using LU-decomposition with
// backsubstitution of unit vectors. Reference: Numerical Recipies in C, 2nd
// ed., by Press, Teukolsky, Vetterling & Flannery. 
// Code written by Fredrik Orderud.
// http://www.crystalclearsoftware.com/cgi-bin/boost_wiki/wiki.pl?LU_Matrix_Inversion

#ifndef INVERT_MATRIX_HPP
#define INVERT_MATRIX_HPP

// REMEMBER to update "lu.hpp" header includes from boost-CVS
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/triangular.hpp>
#include <boost/numeric/ublas/lu.hpp>
#include <boost/numeric/ublas/io.hpp>

namespace ublas = boost::numeric::ublas;

/* Matrix inversion routine.
   Uses lu_factorize and lu_substitute in uBLAS to invert a matrix */
template<class T>
bool invert_matrix(const ublas::matrix<T>& input, ublas::matrix<T>& inverse) 
{
    using namespace boost::numeric::ublas;
    typedef permutation_matrix<std::size_t> pmatrix;
    // create a working copy of the input
    matrix<T> A(input);
    // create a permutation matrix for the LU-factorization
    pmatrix pm(A.size1());

    // perform LU-factorization
    int res = lu_factorize(A,pm);
    if( res != 0 ) return false;

    // create identity matrix of "inverse"
    inverse.assign(ublas::identity_matrix<T>(A.size1()));

    // backsubstitute to get the inverse
    lu_substitute(A, pm, inverse);
    
    return true;
}

#endif //INVERT_MATRIX_HPP