1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
#ifndef _CCRP_H_
#define _CCRP_H_
#include <numeric>
#include <cassert>
#include <cmath>
#include <list>
#include <iostream>
#include <vector>
#include <tr1/unordered_map>
#include <boost/functional/hash.hpp>
#include "sampler.h"
#include "slice_sampler.h"
// Chinese restaurant process (Pitman-Yor parameters) with table tracking.
template <typename Dish, typename DishHash = boost::hash<Dish> >
class CCRP {
public:
CCRP(double disc, double conc) :
num_tables_(),
num_customers_(),
discount_(disc),
concentration_(conc),
discount_prior_alpha_(std::numeric_limits<double>::quiet_NaN()),
discount_prior_beta_(std::numeric_limits<double>::quiet_NaN()),
concentration_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
concentration_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {}
CCRP(double d_alpha, double d_beta, double c_shape, double c_rate, double d = 0.1, double c = 10.0) :
num_tables_(),
num_customers_(),
discount_(d),
concentration_(c),
discount_prior_alpha_(d_alpha),
discount_prior_beta_(d_beta),
concentration_prior_shape_(c_shape),
concentration_prior_rate_(c_rate) {}
double discount() const { return discount_; }
double concentration() const { return concentration_; }
bool has_discount_prior() const {
return !std::isnan(discount_prior_alpha_);
}
bool has_concentration_prior() const {
return !std::isnan(concentration_prior_shape_);
}
void clear() {
num_tables_ = 0;
num_customers_ = 0;
dish_locs_.clear();
}
unsigned num_tables(const Dish& dish) const {
const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
if (it == dish_locs_.end()) return 0;
return it->second.table_counts_.size();
}
unsigned num_customers() const {
return num_customers_;
}
unsigned num_customers(const Dish& dish) const {
const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
if (it == dish_locs_.end()) return 0;
return it->total_dish_count_;
}
// returns +1 or 0 indicating whether a new table was opened
int increment(const Dish& dish, const double& p0, MT19937* rng) {
DishLocations& loc = dish_locs_[dish];
bool share_table = false;
if (loc.total_dish_count_) {
const double p_empty = (concentration_ + num_tables_ * discount_) * p0;
const double p_share = (loc.total_dish_count_ - loc.table_counts_.size() * discount_);
share_table = rng->SelectSample(p_empty, p_share);
}
if (share_table) {
double r = rng->next() * (loc.total_dish_count_ - loc.table_counts_.size() * discount_);
for (typename std::list<unsigned>::iterator ti = loc.table_counts_.begin();
ti != loc.table_counts_.end(); ++ti) {
r -= (*ti - discount_);
if (r <= 0.0) {
++(*ti);
break;
}
}
if (r > 0.0) {
std::cerr << "Serious error: r=" << r << std::endl;
Print(&std::cerr);
assert(r <= 0.0);
}
} else {
loc.table_counts_.push_back(1u);
++num_tables_;
}
++loc.total_dish_count_;
++num_customers_;
return (share_table ? 0 : 1);
}
// returns -1 or 0, indicating whether a table was closed
int decrement(const Dish& dish, MT19937* rng) {
DishLocations& loc = dish_locs_[dish];
assert(loc.total_dish_count_);
if (loc.total_dish_count_ == 1) {
dish_locs_.erase(dish);
--num_tables_;
--num_customers_;
return -1;
} else {
int delta = 0;
// sample customer to remove UNIFORMLY. that is, do NOT use the discount
// here. if you do, it will introduce (unwanted) bias!
double r = rng->next() * loc.total_dish_count_;
--loc.total_dish_count_;
for (typename std::list<unsigned>::iterator ti = loc.table_counts_.begin();
ti != loc.table_counts_.end(); ++ti) {
r -= *ti;
if (r <= 0.0) {
if ((--(*ti)) == 0) {
--num_tables_;
delta = -1;
loc.table_counts_.erase(ti);
}
break;
}
}
if (r > 0.0) {
std::cerr << "Serious error: r=" << r << std::endl;
Print(&std::cerr);
assert(r <= 0.0);
}
--num_customers_;
return delta;
}
}
double prob(const Dish& dish, const double& p0) const {
const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
const double r = num_tables_ * discount_ + concentration_;
if (it == dish_locs_.end()) {
return r * p0 / (num_customers_ + concentration_);
} else {
return (it->second.total_dish_count_ - discount_ * it->second.table_counts_.size() + r * p0) /
(num_customers_ + concentration_);
}
}
double log_crp_prob() const {
return log_crp_prob(discount_, concentration_);
}
static double log_beta_density(const double& x, const double& alpha, const double& beta) {
assert(x > 0.0);
assert(x < 1.0);
assert(alpha > 0.0);
assert(beta > 0.0);
const double lp = (alpha-1)*log(x)+(beta-1)*log(1-x)+lgamma(alpha+beta)-lgamma(alpha)-lgamma(beta);
return lp;
}
static double log_gamma_density(const double& x, const double& shape, const double& rate) {
assert(x >= 0.0);
assert(shape > 0.0);
assert(rate > 0.0);
const double lp = (shape-1)*log(x) - shape*log(rate) - x/rate - lgamma(shape);
return lp;
}
// taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
// does not include P_0's
double log_crp_prob(const double& discount, const double& concentration) const {
double lp = 0.0;
if (has_discount_prior())
lp = log_beta_density(discount, discount_prior_alpha_, discount_prior_beta_);
if (has_concentration_prior())
lp += log_gamma_density(concentration, concentration_prior_shape_, concentration_prior_rate_);
assert(lp <= 0.0);
if (num_customers_) {
if (discount > 0.0) {
const double r = lgamma(1.0 - discount);
lp += lgamma(concentration) - lgamma(concentration + num_customers_)
+ num_tables_ * log(discount) + lgamma(concentration / discount + num_tables_)
- lgamma(concentration / discount);
assert(std::isfinite(lp));
for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
it != dish_locs_.end(); ++it) {
const DishLocations& cur = it->second;
for (std::list<unsigned>::const_iterator ti = cur.table_counts_.begin(); ti != cur.table_counts_.end(); ++ti) {
lp += lgamma(*ti - discount) - r;
}
}
} else {
assert(!"not implemented yet");
}
}
assert(std::isfinite(lp));
return lp;
}
void resample_hyperparameters(MT19937* rng) {
assert(has_discount_prior() || has_concentration_prior());
DiscountResampler dr(*this);
ConcentrationResampler cr(*this);
const int niterations = 10;
double gamma_upper = std::numeric_limits<double>::infinity();
for (int iter = 0; iter < 5; ++iter) {
if (has_concentration_prior()) {
concentration_ = slice_sampler1d(cr, concentration_, *rng, 0.0,
gamma_upper, 0.0, niterations, 100*niterations);
}
if (has_discount_prior()) {
discount_ = slice_sampler1d(dr, discount_, *rng, std::numeric_limits<double>::min(),
1.0, 0.0, niterations, 100*niterations);
}
}
concentration_ = slice_sampler1d(cr, concentration_, *rng, 0.0,
gamma_upper, 0.0, niterations, 100*niterations);
}
struct DiscountResampler {
DiscountResampler(const CCRP& crp) : crp_(crp) {}
const CCRP& crp_;
double operator()(const double& proposed_discount) const {
return crp_.log_crp_prob(proposed_discount, crp_.concentration_);
}
};
struct ConcentrationResampler {
ConcentrationResampler(const CCRP& crp) : crp_(crp) {}
const CCRP& crp_;
double operator()(const double& proposed_concentration) const {
return crp_.log_crp_prob(crp_.discount_, proposed_concentration);
}
};
struct DishLocations {
DishLocations() : total_dish_count_() {}
unsigned total_dish_count_; // customers at all tables with this dish
std::list<unsigned> table_counts_; // list<> gives O(1) deletion and insertion, which we want
// .size() is the number of tables for this dish
};
void Print(std::ostream* out) const {
for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
it != dish_locs_.end(); ++it) {
(*out) << it->first << " (" << it->second.total_dish_count_ << " on " << it->second.table_counts_.size() << " tables): ";
for (typename std::list<unsigned>::const_iterator i = it->second.table_counts_.begin();
i != it->second.table_counts_.end(); ++i) {
(*out) << " " << *i;
}
(*out) << std::endl;
}
}
typedef typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator const_iterator;
const_iterator begin() const {
return dish_locs_.begin();
}
const_iterator end() const {
return dish_locs_.end();
}
unsigned num_tables_;
unsigned num_customers_;
std::tr1::unordered_map<Dish, DishLocations, DishHash> dish_locs_;
double discount_;
double concentration_;
// optional beta prior on discount_ (NaN if no prior)
double discount_prior_alpha_;
double discount_prior_beta_;
// optional gamma prior on concentration_ (NaN if no prior)
double concentration_prior_shape_;
double concentration_prior_rate_;
};
template <typename T,typename H>
std::ostream& operator<<(std::ostream& o, const CCRP<T,H>& c) {
c.Print(&o);
return o;
}
#endif
|