summaryrefslogtreecommitdiff
path: root/dtrain/score.h
blob: e9130e1873fd2e4f464f923d1d352de695764e58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#ifndef _DTRAIN_SCORE_H_
#define _DTRAIN_SCORE_H_


#include <iostream>
#include <vector>
#include <map>
#include <cassert>
#include <cmath>

#include "wordid.h"

using namespace std;


namespace dtrain
{


/*
 * ScorePair
 *
 */
struct ScorePair
{
  ScorePair(double modelscore, double score) : modelscore_(modelscore), score_(score) {} 
  double modelscore_, score_;
  double GetModelScore() { return modelscore_; }
  double GetScore() { return score_; }
};

typedef vector<ScorePair> Scores;


/*
 * NgramCounts
 *
 */
struct NgramCounts
{
  NgramCounts( const size_t N ) : N_( N ) {
    reset();
  } 
  size_t N_;
  map<size_t, size_t> clipped;
  map<size_t, size_t> sum;

  void
  operator+=( const NgramCounts& rhs )
  {
    assert( N_ == rhs.N_ );
    for ( size_t i = 0; i < N_; i++ ) {
      this->clipped[i] += rhs.clipped.find(i)->second;
      this->sum[i] += rhs.sum.find(i)->second;
    }
  }

  void
  add( size_t count, size_t ref_count, size_t i )
  {
    assert( i < N_ );
    if ( count > ref_count ) {
      clipped[i] += ref_count;
      sum[i] += count;
    } else {
      clipped[i] += count;
      sum[i] += count;
    }
  }

  void
  reset()
  {
    size_t i;
    for ( i = 0; i < N_; i++ ) {
      clipped[i] = 0;
      sum[i] = 0;
    }
  }

  void
  print()
  {
    for ( size_t i = 0; i < N_; i++ ) {
      cout << i+1 << "grams (clipped):\t" << clipped[i] << endl;
      cout << i+1 << "grams:\t\t\t" << sum[i] << endl;
    }
  }
};


typedef map<vector<WordID>, size_t> Ngrams;
Ngrams make_ngrams( vector<WordID>& s, size_t N );
NgramCounts make_ngram_counts( vector<WordID> hyp, vector<WordID> ref, size_t N );

double brevity_penaly( const size_t hyp_len, const size_t ref_len );
double bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, const size_t N,
             vector<float> weights = vector<float>() );
double stupid_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, size_t N,
                    vector<float> weights = vector<float>() );
double smooth_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, const size_t N,
                    vector<float> weights = vector<float>() );
double approx_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, const size_t N,
                    vector<float> weights = vector<float>() );


} // namespace


#endif