1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
#ifndef _RULE_H_
#define _RULE_H_
#include <algorithm>
#include <vector>
#include <cassert>
#include <boost/shared_ptr.hpp>
#include "sparse_vector.h"
#include "wordid.h"
class TRule;
typedef boost::shared_ptr<TRule> TRulePtr;
struct NTSizeSummaryStatistics {
NTSizeSummaryStatistics(int arity) : means(arity), vars(arity) {}
std::vector<float> means;
std::vector<float> vars;
};
// Translation rule
class TRule {
public:
TRule() : lhs_(0), prev_i(-1), prev_j(-1) { }
TRule(WordID lhs, const WordID* src, int src_size, const WordID* trg, int trg_size, const int* feat_ids, const double* feat_vals, int feat_size, int arity) :
e_(trg, trg + trg_size), f_(src, src + src_size), lhs_(lhs), arity_(arity), prev_i(-1), prev_j(-1) {
for (int i = 0; i < feat_size; ++i)
scores_.set_value(feat_ids[i], feat_vals[i]);
}
bool IsGoal() const;
explicit TRule(const std::vector<WordID>& e) : e_(e), lhs_(0), prev_i(-1), prev_j(-1) {}
TRule(const std::vector<WordID>& e, const std::vector<WordID>& f, const WordID& lhs) :
e_(e), f_(f), lhs_(lhs), prev_i(-1), prev_j(-1) {}
TRule(const TRule& other) :
e_(other.e_), f_(other.f_), lhs_(other.lhs_), scores_(other.scores_), arity_(other.arity_), prev_i(-1), prev_j(-1) {}
// if mono or strict is true, then lexer won't be used, and //FIXME: > 9 variables won't work
explicit TRule(const std::string& text, bool strict = false, bool mono = false) : prev_i(-1), prev_j(-1) {
ReadFromString(text, strict, mono);
}
// deprecated, use lexer
// make a rule from a hiero-like rule table, e.g.
// [X] ||| [X,1] DE [X,2] ||| [X,2] of the [X,1]
// if misformatted, returns NULL
static TRule* CreateRuleSynchronous(const std::string& rule);
// deprecated, use lexer
// make a rule from a phrasetable entry (i.e., one that has no LHS type), e.g:
// el gato ||| the cat ||| Feature_2=0.34
static TRule* CreateRulePhrasetable(const std::string& rule);
// deprecated, use lexer
// make a rule from a non-synchrnous CFG representation, e.g.:
// [LHS] ||| term1 [NT] term2 [OTHER_NT] [YET_ANOTHER_NT]
static TRule* CreateRuleMonolingual(const std::string& rule);
static TRule* CreateLexicalRule(const WordID& src, const WordID& trg) {
return new TRule(src, trg);
}
void ESubstitute(const std::vector<const std::vector<WordID>* >& var_values,
std::vector<WordID>* result) const {
int vc = 0;
result->clear();
for (std::vector<WordID>::const_iterator i = e_.begin(); i != e_.end(); ++i) {
const WordID& c = *i;
if (c < 1) {
++vc;
const std::vector<WordID>& var_value = *var_values[-c];
std::copy(var_value.begin(),
var_value.end(),
std::back_inserter(*result));
} else {
result->push_back(c);
}
}
assert(vc == var_values.size());
}
void FSubstitute(const std::vector<const std::vector<WordID>* >& var_values,
std::vector<WordID>* result) const {
int vc = 0;
result->clear();
for (std::vector<WordID>::const_iterator i = f_.begin(); i != f_.end(); ++i) {
const WordID& c = *i;
if (c < 1) {
const std::vector<WordID>& var_value = *var_values[vc++];
std::copy(var_value.begin(),
var_value.end(),
std::back_inserter(*result));
} else {
result->push_back(c);
}
}
assert(vc == var_values.size());
}
bool ReadFromString(const std::string& line, bool strict = false, bool monolingual = false);
bool Initialized() const { return e_.size(); }
std::string AsString(bool verbose = true) const;
friend std::ostream &operator<<(std::ostream &o,TRule const& r);
static TRule DummyRule() {
TRule res;
res.e_.resize(1, 0);
return res;
}
const std::vector<WordID>& f() const { return f_; }
const std::vector<WordID>& e() const { return e_; }
int EWords() const { return ELength() - Arity(); }
int FWords() const { return FLength() - Arity(); }
int FLength() const { return f_.size(); }
int ELength() const { return e_.size(); }
int Arity() const { return arity_; }
bool IsUnary() const { return (Arity() == 1) && (f_.size() == 1); }
const SparseVector<double>& GetFeatureValues() const { return scores_; }
double Score(int i) const { return scores_.get(i); }
WordID GetLHS() const { return lhs_; }
void ComputeArity();
// 0 = first variable, -1 = second variable, -2 = third ..., i.e. tail_nodes_[-w] if w<=0, TD::Convert(w) otherwise
std::vector<WordID> e_;
// < 0: *-1 = encoding of category of variable
std::vector<WordID> f_;
WordID lhs_;
SparseVector<double> scores_;
char arity_;
// these attributes are application-specific and should probably be refactored
TRulePtr parent_rule_; // usually NULL, except when doing constrained decoding
// this is only used when doing synchronous parsing
short int prev_i;
short int prev_j;
// may be null
boost::shared_ptr<NTSizeSummaryStatistics> nt_size_summary_;
// only for coarse-to-fine decoding
boost::shared_ptr<std::vector<TRulePtr> > fine_rules_;
private:
TRule(const WordID& src, const WordID& trg) : e_(1, trg), f_(1, src), lhs_(), arity_(), prev_i(), prev_j() {}
bool SanityCheck() const;
};
#endif
|