1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
#include "tromble_loss.h"
#include "fast_lexical_cast.hpp"
#include <boost/algorithm/string/predicate.hpp>
#include <boost/circular_buffer.hpp>
#include <boost/functional/hash.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/tokenizer.hpp>
#include <boost/unordered_map.hpp>
#include <cmath>
#include <fstream>
#include <vector>
#include "sentence_metadata.h"
#include "trule.h"
#include "tdict.h"
using namespace std;
namespace {
typedef unsigned char GramCount;
struct RefCounts {
GramCount max;
std::vector<GramCount> refs;
size_t length;
};
typedef boost::unordered_map<std::vector<WordID>, size_t, boost::hash<std::vector<WordID> > > NGramMap;
// Take all the n-grams in the references and stuff them into ngrams.
void MakeNGramMapFromReferences(const vector<vector<WordID> > &references,
int n,
vector<RefCounts> *counts,
NGramMap *ngrams) {
ngrams->clear();
std::pair<vector<WordID>, size_t> insert_me;
vector<WordID> &ngram = insert_me.first;
ngram.reserve(n);
size_t &id = insert_me.second;
id = 0;
for (int refi = 0; refi < references.size(); ++refi) {
const vector<WordID>& ref = references[refi];
const int s = ref.size();
for (int j=0; j<s; ++j) {
const int remaining = s-j;
const int k = (n < remaining ? n : remaining);
ngram.clear();
for (unsigned int i = 0; i < k; ++i) {
ngram.push_back(ref[j + i]);
std::pair<NGramMap::iterator, bool> ret(ngrams->insert(insert_me));
if (ret.second) {
counts->resize(id + 1);
RefCounts &ref_counts = counts->back();
ref_counts.max = 1;
ref_counts.refs.resize(references.size());
ref_counts.refs[refi] = 1;
ref_counts.length = ngram.size();
++id;
} else {
RefCounts &ref_counts = (*counts)[ret.first->second];
ref_counts.max = std::max(ref_counts.max, ++ref_counts.refs[refi]);
}
}
}
}
}
struct MutableState {
MutableState(void *from, size_t n) : length(reinterpret_cast<size_t*>(from)), left(reinterpret_cast<WordID *>(length + 1)), right(left + n - 1), counts(reinterpret_cast<GramCount *>(right + n - 1)) {}
size_t *length;
WordID *left, *right;
GramCount *counts;
static size_t Size(size_t n, size_t bound_ngram_id) { return sizeof(size_t) + (n - 1) * 2 * sizeof(WordID) + bound_ngram_id * sizeof(GramCount); }
};
struct ConstState {
ConstState(const void *from, size_t n) : length(reinterpret_cast<const size_t*>(from)), left(reinterpret_cast<const WordID *>(length + 1)), right(left + n - 1), counts(reinterpret_cast<const GramCount *>(right + n - 1)) {}
const size_t *length;
const WordID *left, *right;
const GramCount *counts;
static size_t Size(size_t n, size_t bound_ngram_id) { return sizeof(size_t) + (n - 1) * 2 * sizeof(WordID) + bound_ngram_id * sizeof(GramCount); }
};
template <class T> struct CompatibleHashRange : public std::unary_function<const boost::iterator_range<T> &, size_t> {
size_t operator()(const boost::iterator_range<T> &range) const {
return boost::hash_range(range.begin(), range.end());
}
};
template <class T> struct CompatibleEqualsRange : public std::binary_function<const boost::iterator_range<T> &, const std::vector<WordID> &, size_t> {
size_t operator()(const boost::iterator_range<T> &range, const std::vector<WordID> &vec) const {
return boost::algorithm::equals(range, vec);
}
size_t operator()(const std::vector<WordID> &vec, const boost::iterator_range<T> &range) const {
return boost::algorithm::equals(range, vec);
}
};
void AddWord(const boost::circular_buffer<WordID> &segment, size_t min_length, const NGramMap &ref_grams, GramCount *counters) {
typedef boost::circular_buffer<WordID>::const_iterator BufferIt;
typedef boost::iterator_range<BufferIt> SegmentRange;
if (segment.size() < min_length) return;
#if 0
CompatibleHashRange<BufferIt> hasher;
CompatibleEqualsRange<BufferIt> equals;
for (BufferIt seg_start(segment.end() - min_length); ; --seg_start) {
NGramMap::const_iterator found = ref_grams.find(SegmentRange(seg_start, segment.end()));
if (found == ref_grams.end()) break;
++counters[found->second];
if (seg_start == segment.begin()) break;
}
#endif
}
} // namespace
class TrombleLossComputerImpl {
public:
explicit TrombleLossComputerImpl(const std::string ¶ms) : star_(TD::Convert("<{STAR}>")) {
typedef boost::tokenizer<boost::char_separator<char> > Tokenizer;
// Argument parsing
std::string ref_file_name;
Tokenizer tok(params, boost::char_separator<char>(" "));
Tokenizer::iterator i = tok.begin();
if (i == tok.end()) {
std::cerr << "TrombleLossComputer needs a reference file name." << std::endl;
exit(1);
}
ref_file_name = *i++;
if (i == tok.end()) {
std::cerr << "TrombleLossComputer needs to know how many references." << std::endl;
exit(1);
}
num_refs_ = boost::lexical_cast<unsigned int>(*i++);
for (; i != tok.end(); ++i) {
thetas_.push_back(boost::lexical_cast<double>(*i));
}
if (thetas_.empty()) {
std::cerr << "TrombleLossComputer is pointless with no weight on n-grams." << std::endl;
exit(1);
}
// Read references file.
std::ifstream ref_file(ref_file_name.c_str());
if (!ref_file) {
std::cerr << "Could not open TrombleLossComputer file " << ref_file_name << std::endl;
exit(1);
}
std::string ref;
vector<vector<WordID> > references(num_refs_);
bound_ngram_id_ = 0;
for (unsigned int sentence = 0; ref_file; ++sentence) {
for (unsigned int refidx = 0; refidx < num_refs_; ++refidx) {
if (!getline(ref_file, ref)) {
if (refidx == 0) break;
std::cerr << "Short read of " << refidx << " references for sentence " << sentence << std::endl;
exit(1);
}
TD::ConvertSentence(ref, &references[refidx]);
}
ref_ids_.resize(sentence + 1);
ref_counts_.resize(sentence + 1);
MakeNGramMapFromReferences(references, thetas_.size(), &ref_counts_.back(), &ref_ids_.back());
bound_ngram_id_ = std::max(bound_ngram_id_, ref_ids_.back().size());
}
}
size_t StateSize() const {
// n-1 boundary words plus counts for n-grams currently rendered as bytes even though most would fit in bits.
// Also, this is cached by higher up classes so no need to cache here.
return MutableState::Size(thetas_.size(), bound_ngram_id_);
}
double Traversal(
const SentenceMetadata &smeta,
const TRule &rule,
const vector<const void*> &ant_contexts,
void *out_context) const {
// TODO: get refs from sentence metadata.
// This will require resizable features.
if (smeta.GetSentenceID() >= ref_ids_.size()) {
std::cerr << "Sentence ID " << smeta.GetSentenceID() << " doesn't have references; there are only " << ref_ids_.size() << " references." << std::endl;
exit(1);
}
const NGramMap &ngrams = ref_ids_[smeta.GetSentenceID()];
MutableState out_state(out_context, thetas_.size());
memset(out_state.counts, 0, bound_ngram_id_ * sizeof(GramCount));
boost::circular_buffer<WordID> history(thetas_.size());
std::vector<const void*>::const_iterator ant_context = ant_contexts.begin();
*out_state.length = 0;
size_t pushed = 0;
const size_t keep = thetas_.size() - 1;
for (vector<WordID>::const_iterator rhs = rule.e().begin(); rhs != rule.e().end(); ++rhs) {
if (*rhs < 1) {
assert(ant_context != ant_contexts.end());
// Constituent
ConstState rhs_state(*ant_context, thetas_.size());
*out_state.length += *rhs_state.length;
{
GramCount *accum = out_state.counts;
for (const GramCount *c = rhs_state.counts; c != rhs_state.counts + ngrams.size(); ++c, ++accum) {
*accum += *c;
}
}
const WordID *w = rhs_state.left;
bool long_constit = true;
for (size_t i = 1; i <= keep; ++i, ++w) {
if (*w == star_) {
long_constit = false;
break;
}
history.push_back(*w);
if (++pushed == keep) {
std::copy(history.begin(), history.end(), out_state.left);
}
// Now i is the length of the history coming from this constituent. So it needs at least i+1 words to have a cross-child add.
AddWord(history, i + 1, ngrams, out_state.counts);
}
// If the consituent is shorter than thetas_.size(), then the
// constituent's left is the entire constituent, so history is already
// correct. Otherwise, the entire right hand side is the entire
// history.
if (long_constit) {
history.assign(thetas_.size(), rhs_state.right, rhs_state.right + keep);
}
++ant_context;
} else {
// Word
++*out_state.length;
history.push_back(*rhs);
if (++pushed == keep) {
std::copy(history.begin(), history.end(), out_state.left);
}
AddWord(history, 1, ngrams, out_state.counts);
}
}
// Fill in left and right constituents.
if (pushed < keep) {
std::copy(history.begin(), history.end(), out_state.left);
for (WordID *i = out_state.left + pushed; i != out_state.left + keep; ++i) {
*i = star_;
}
std::copy(out_state.left, out_state.left + keep, out_state.right);
} else if(pushed == keep) {
std::copy(history.begin(), history.end(), out_state.right);
} else if ((pushed > keep) && !history.empty()) {
std::copy(history.begin() + 1, history.end(), out_state.right);
}
std::vector<RefCounts>::const_iterator ref_info = ref_counts_[smeta.GetSentenceID()].begin();
// Clip the counts and count matches.
// Indexed by reference then by length.
std::vector<std::vector<unsigned int> > matches(num_refs_, std::vector<unsigned int>(thetas_.size()));
for (GramCount *c = out_state.counts; c != out_state.counts + ngrams.size(); ++c, ++ref_info) {
*c = std::min(*c, ref_info->max);
if (*c) {
for (unsigned int refidx = 0; refidx < num_refs_; ++refidx) {
assert(ref_info->length >= 1);
assert(ref_info->length - 1 < thetas_.size());
matches[refidx][ref_info->length - 1] += std::min(*c, ref_info->refs[refidx]);
}
}
}
double best_score = 0.0;
for (unsigned int refidx = 0; refidx < num_refs_; ++refidx) {
double score = 0.0;
for (unsigned int j = 0; j < std::min(*out_state.length, thetas_.size()); ++j) {
score += thetas_[j] * static_cast<double>(matches[refidx][j]) / static_cast<double>(*out_state.length - j);
}
best_score = std::max(best_score, score);
}
return best_score;
}
private:
unsigned int num_refs_;
// Indexed by sentence id.
std::vector<NGramMap> ref_ids_;
// Then by id from ref_ids_.
std::vector<std::vector<RefCounts> > ref_counts_;
// thetas_[0] is the weight for 1-grams
std::vector<double> thetas_;
// All ngram ids in ref_ids_ are < this value.
size_t bound_ngram_id_;
const WordID star_;
};
TrombleLossComputer::TrombleLossComputer(const std::string ¶ms) :
boost::base_from_member<PImpl>(new TrombleLossComputerImpl(params)),
FeatureFunction(boost::base_from_member<PImpl>::member->StateSize()),
fid_(FD::Convert("TrombleLossComputer")) {}
TrombleLossComputer::~TrombleLossComputer() {}
void TrombleLossComputer::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_contexts,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* out_context) const {
(void) estimated_features;
const double loss = boost::base_from_member<PImpl>::member->Traversal(smeta, *edge.rule_, ant_contexts, out_context);
features->set_value(fid_, loss);
}
|