1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
#ifndef _HG_H_
#define _HG_H_
// define USE_INFO_EDGE 1 if you want lots of debug info shown with --show_derivations - otherwise it adds quite a bit of overhead if ffs have their logging enabled (e.g. ff_from_fsa)
#ifndef USE_INFO_EDGE
# define USE_INFO_EDGE 0
#endif
#if USE_INFO_EDGE
# define INFO_EDGE(e,msg) do { std::ostringstream &o=(e.info_);o<<msg; } while(0)
# define INFO_EDGEw(e,msg) do { std::ostringstream &o(e.info_);if (o.empty()) o<<' ';o<<msg; } while(0)
#else
# define INFO_EDGE(e,msg)
# define INFO_EDGEw(e,msg)
#endif
#define INFO_EDGEln(e,msg) INFO_EDGE(e,msg<<'\n')
#include <sstream>
#include <string>
#include <vector>
#include <boost/shared_ptr.hpp>
#include "feature_vector.h"
#include "small_vector.h"
#include "wordid.h"
#include "tdict.h"
#include "trule.h"
#include "prob.h"
#include "indices_after.h"
#include "nt_span.h"
// if you define this, edges_ will be sorted
// (normally, just nodes_ are - root must be nodes_.back()), but this can be quite
// slow
#undef HG_EDGES_TOPO_SORTED
class Hypergraph;
typedef boost::shared_ptr<Hypergraph> HypergraphP;
// class representing an acyclic hypergraph
// - edges have 1 head, 0..n tails
class Hypergraph {
public:
Hypergraph() : is_linear_chain_(false) {}
// SmallVector is a fast, small vector<int> implementation for sizes <= 2
typedef SmallVectorInt TailNodeVector; // indices in nodes_
typedef std::vector<int> EdgesVector; // indices in edges_
// TODO get rid of cat_?
// TODO keep cat_ and add span and/or state? :)
struct Node {
Node() : id_(), cat_(), promise(1) {}
int id_; // equal to this object's position in the nodes_ vector
WordID cat_; // non-terminal category if <0, 0 if not set
WordID NT() const { return -cat_; }
EdgesVector in_edges_; // an in edge is an edge with this node as its head. (in edges come from the bottom up to us) indices in edges_
EdgesVector out_edges_; // an out edge is an edge with this node as its tail. (out edges leave us up toward the top/goal). indices in edges_
double promise; // set in global pruning; in [0,infty) so that mean is 1. use: e.g. scale cube poplimit. //TODO: appears to be useless, compile without this? on the other hand, pretty cheap.
void copy_fixed(Node const& o) { // nonstructural fields only - structural ones are managed by sorting/pruning/subsetting
cat_=o.cat_;
promise=o.promise;
}
void copy_reindex(Node const& o,indices_after const& n2,indices_after const& e2) {
copy_fixed(o);
id_=n2[id_];
e2.reindex_push_back(o.in_edges_,in_edges_);
e2.reindex_push_back(o.out_edges_,out_edges_);
}
};
// TODO get rid of edge_prob_? (can be computed on the fly as the dot
// product of the weight vector and the feature values)
struct Edge {
Edge() : i_(-1), j_(-1), prev_i_(-1), prev_j_(-1) {}
Edge(int id,Edge const& copy_pod_from) : id_(id) { copy_pod(copy_pod_from); } // call copy_features yourself later.
Edge(int id,Edge const& copy_from,TailNodeVector const& tail) // fully inits - probably more expensive when push_back(Edge(...)) than setting after
: tail_nodes_(tail),id_(id) { copy_pod(copy_from);copy_features(copy_from); }
inline int Arity() const { return tail_nodes_.size(); }
int head_node_; // refers to a position in nodes_
TailNodeVector tail_nodes_; // contents refer to positions in nodes_
TRulePtr rule_;
FeatureVector feature_values_;
prob_t edge_prob_; // dot product of weights and feat_values
int id_; // equal to this object's position in the edges_ vector
//FIXME: these span ids belong in Node, not Edge, right? every node should have the same spans.
// span info. typically, i_ and j_ refer to indices in the source sentence.
// In synchronous parsing, i_ and j_ will refer to target sentence/lattice indices
// while prev_i_ prev_j_ will refer to positions in the source.
// Note: it is up to the translator implementation
// to properly set these values. For some models (like the Forest-input
// phrase based model) it may not be straightforward to do. if these values
// are not properly set, most things will work but alignment and any features
// that depend on them will be broken.
short int i_;
short int j_;
short int prev_i_;
short int prev_j_;
void copy_info(Edge const& o) {
#if USE_INFO_EDGE
set_info(o.info_.str()); // by convention, each person putting info here starts with a separator (e.g. space). it's empty if nobody put any info there.
#endif
}
void copy_pod(Edge const& o) {
rule_=o.rule_;
i_ = o.i_; j_ = o.j_; prev_i_ = o.prev_i_; prev_j_ = o.prev_j_;
}
void copy_features(Edge const& o) {
feature_values_=o.feature_values_;
copy_info(o);
}
void copy_fixed(Edge const& o) {
copy_pod(o);
copy_features(o);
edge_prob_ = o.edge_prob_;
}
void copy_reindex(Edge const& o,indices_after const& n2,indices_after const& e2) {
copy_fixed(o);
head_node_=n2[o.head_node_];
id_=e2[o.id_];
n2.reindex_push_back(o.tail_nodes_,tail_nodes_);
}
#if USE_INFO_EDGE
std::ostringstream info_;
void set_info(std::string const& s) {
info_.str(s);
info_.seekp(0,std::ios_base::end);
}
Edge(Edge const& o) : head_node_(o.head_node_),tail_nodes_(o.tail_nodes_),rule_(o.rule_),feature_values_(o.feature_values_),edge_prob_(o.edge_prob_),id_(o.id_),i_(o.i_),j_(o.j_),prev_i_(o.prev_i_),prev_j_(o.prev_j_), info_(o.info_.str(),std::ios_base::ate) {
// info_.seekp(0,std::ios_base::end);
}
void operator=(Edge const& o) {
head_node_ = o.head_node_; tail_nodes_ = o.tail_nodes_; rule_ = o.rule_; feature_values_ = o.feature_values_; edge_prob_ = o.edge_prob_; id_ = o.id_; i_ = o.i_; j_ = o.j_; prev_i_ = o.prev_i_; prev_j_ = o.prev_j_;
set_info(o.info_.str());
}
std::string info() const { return info_.str(); }
void reset_info() { info_.str(""); info_.clear(); }
#else
std::string info() const { return std::string(); }
void reset_info() { }
void set_info(std::string const& s) { }
#endif
void show(std::ostream &o,unsigned mask=SPAN|RULE) const {
o<<'{';
if (mask&CATEGORY)
o<<TD::Convert(rule_->GetLHS());
if (mask&PREV_SPAN)
o<<'<'<<prev_i_<<','<<prev_j_<<'>';
if (mask&SPAN)
o<<'<'<<i_<<','<<j_<<'>';
if (mask&PROB)
o<<" p="<<edge_prob_;
if (mask&FEATURES)
o<<" "<<feature_values_;
if (mask&RULE)
o<<rule_->AsString(mask&RULE_LHS);
if (USE_INFO_EDGE) {
std::string const& i=info();
if (mask&&!i.empty()) o << " |||"<<i; // remember, the initial space is expected as part of i
}
o<<'}';
}
std::string show(unsigned mask=SPAN|RULE) const {
std::ostringstream o;
show(o,mask);
return o.str();
}
/* generic recursion re: child_handle=re(tail_nodes_[i],i,parent_handle)
FIXME: make kbest create a simple derivation-tree structure (could be a
hg), and replace the list-of-edges viterbi.h with a tree-structured one.
CreateViterbiHypergraph can do for 1best, though.
*/
template <class EdgeRecurse,class TEdgeHandle>
std::string derivation_tree(EdgeRecurse const& re,TEdgeHandle const& eh,bool indent=true,int show_mask=SPAN|RULE,int maxdepth=0x7FFFFFFF,int depth=0) const {
std::ostringstream o;
derivation_tree_stream(re,eh,o,indent,show_mask,maxdepth,depth);
return o.str();
}
template <class EdgeRecurse,class TEdgeHandle>
void derivation_tree_stream(EdgeRecurse const& re,TEdgeHandle const& eh,std::ostream &o,bool indent=true,int show_mask=SPAN|RULE,int maxdepth=0x7FFFFFFF,int depth=0) const {
if (depth>maxdepth) return;
if (indent) for (int i=0;i<depth;++i) o<<' ';
o<<'(';
show(o,show_mask);
if (indent) o<<'\n';
for (int i=0;i<tail_nodes_.size();++i) {
TEdgeHandle c=re(tail_nodes_[i],i,eh);
Edge const* cp=c;
if (cp) {
cp->derivation_tree_stream(re,c,o,indent,show_mask,maxdepth,depth+1);
if (!indent) o<<' ';
}
}
if (indent) for (int i=0;i<depth;++i) o<<' ';
o<<")";
if (indent) o<<"\n";
}
};
// all this info ought to live in Node, but for some reason it's on Edges.
// except for stateful models that have split nt,span, this should identify the node
void SetNodeOrigin(int nodeid,NTSpan &r) const {
Node const &n=nodes_[nodeid];
r.nt=n.NT();
if (!n.in_edges_.empty()) {
Edge const& e=edges_[n.in_edges_.front()];
r.s.l=e.i_;
r.s.l=e.j_;
// if (e.rule_) r.nt=-e.rule_->lhs_;
}
}
NTSpan NodeOrigin(int nodeid) const {
NTSpan r;
SetNodeOrigin(nodeid,r);
return r;
}
Span NodeSpan(int nodeid) const {
Span s;
Node const &n=nodes_[nodeid];
if (!n.in_edges_.empty()) {
Edge const& e=edges_[n.in_edges_.front()];
s.l=e.i_;
s.l=e.j_;
}
return s;
}
// 0 if none, -TD index otherwise (just like in rule)
WordID NodeLHS(int nodeid) const {
Node const &n=nodes_[nodeid];
return n.NT();
/*
if (!n.in_edges_.empty()) {
Edge const& e=edges_[n.in_edges_.front()];
if (e.rule_)
return -e.rule_->lhs_;
}
return 0;
*/
}
typedef std::vector<prob_t> EdgeProbs;
typedef std::vector<prob_t> NodeProbs;
typedef std::vector<bool> EdgeMask;
typedef std::vector<bool> NodeMask;
std::string show_viterbi_tree(bool indent=true,int show_mask=SPAN|RULE,int maxdepth=0x7FFFFFFF,int depth=0) const;
// builds viterbi hg and returns it formatted as a pretty string
enum {
NONE=0,CATEGORY=1,SPAN=2,PROB=4,FEATURES=8,RULE=16,RULE_LHS=32,PREV_SPAN=64,ALL=0xFFFFFFFF
};
std::string show_first_tree(bool indent=true,int show_mask=SPAN|RULE,int maxdepth=0x7FFFFFFF,int depth=0) const;
// same as above, but takes in_edges_[0] all the way down - to make it viterbi cost (1-best), call ViterbiSortInEdges() first
typedef Edge const* EdgeHandle;
EdgeHandle operator()(int tailn,int /*taili*/,EdgeHandle /*parent*/) const {
return first_edge(tailn);
}
Edge const* first_edge(int node) const { // only actually viterbi if ViterbiSortInEdges() called. otherwise it's just the first.
EdgesVector const& v=nodes_[node].in_edges_;
return v.empty() ? 0 : &edges_[v.front()];
}
Edge const* first_edge() const {
int nn=nodes_.size();
return nn>=0?first_edge(nn-1):0;
}
#if 0
// returns edge with rule_.IsGoal, returns 0 if none found. otherwise gives best edge_prob_ - note: I don't think edge_prob_ is viterbi cumulative, so this would just be the best local probability.
Edge const* ViterbiGoalEdge() const;
#endif
int GoalNode() const { return nodes_.size()-1; } // by definition, and sorting of nodes in topo order (bottom up)
// post: in_edges_ for each node is ordered by global viterbi. returns 1best goal node edge as well
Edge const* ViterbiSortInEdges();
Edge const* SortInEdgesByNodeViterbi(NodeProbs const& nv);
Edge const* ViterbiSortInEdges(EdgeProbs const& eviterbi);
prob_t ComputeNodeViterbi(NodeProbs *np) const;
prob_t ComputeEdgeViterbi(EdgeProbs *ev) const;
prob_t ComputeEdgeViterbi(NodeProbs const&np,EdgeProbs *ev) const;
void swap(Hypergraph& other) {
other.nodes_.swap(nodes_);
std::swap(is_linear_chain_, other.is_linear_chain_);
other.edges_.swap(edges_);
}
void ResizeNodes(int size) {
nodes_.resize(size);
for (int i = 0; i < size; ++i) nodes_[i].id_ = i;
}
// reserves space in the nodes vector to prevent memory locations
// from changing
void ReserveNodes(size_t n, size_t e = 0) {
nodes_.reserve(n);
if (e) edges_.reserve(e);
}
private:
void index_tails(Edge const& edge) {
for (int i = 0; i < edge.tail_nodes_.size(); ++i)
nodes_[edge.tail_nodes_[i]].out_edges_.push_back(edge.id_);
}
public:
// the below AddEdge all are used mostly for apply_models scoring and so do not set prob_ ; also, you will need to ConnectEdgeToHeadNode yourself (since head may be new)
// tails are already set, copy_fixed members are already set. all we need to do is set id and add to out_edges of tails
Edge* AddEdge(Edge const& nedge) {
int eid=edges_.size();
edges_.push_back(nedge);
Edge* edge = &edges_.back();
edge->id_ = eid;
index_tails(*edge);
return edge;
}
// also copies feature vector
Edge* AddEdge(Edge const& in_edge, const TailNodeVector& tail) {
edges_.push_back(Edge(edges_.size(),in_edge));
Edge* edge = &edges_.back();
edge->copy_features(in_edge);
edge->tail_nodes_ = tail; // possibly faster than copying to Edge() constructed above then copying via push_back. perhaps optimized it's the same.
index_tails(*edge);
return edge;
}
// oldest method in use - should use in parsing (no models) only, in rescoring requires much manual assignment from source edge; favor the previous instead
Edge* AddEdge(const TRulePtr& rule, const TailNodeVector& tail) {
int eid=edges_.size();
edges_.push_back(Edge());
Edge* edge = &edges_.back();
edge->rule_ = rule;
edge->tail_nodes_ = tail;
edge->id_ = eid;
for (int i = 0; i < edge->tail_nodes_.size(); ++i)
nodes_[edge->tail_nodes_[i]].out_edges_.push_back(edge->id_);
return edge;
}
Node* AddNode(const WordID& cat) {
nodes_.push_back(Node());
nodes_.back().cat_ = cat;
nodes_.back().id_ = nodes_.size() - 1;
return &nodes_.back();
}
//TODO: use indices everywhere? bottom two are a bit redundant.
void ConnectEdgeToHeadNode(const int edge_id, const int head_id) {
edges_[edge_id].head_node_ = head_id;
nodes_[head_id].in_edges_.push_back(edge_id);
}
void ConnectEdgeToHeadNode(Edge* edge, Node* head) {
edge->head_node_ = head->id_;
head->in_edges_.push_back(edge->id_);
}
void ConnectEdgeToHeadNode(Edge* edge, int head_id) {
edge->head_node_ = head_id;
nodes_[head_id].in_edges_.push_back(edge->id_);
}
// merge the goal node from other with this goal node
void Union(const Hypergraph& other);
void PrintGraphviz() const;
// compute the total number of paths in the forest
double NumberOfPaths() const;
// BEWARE. this assumes that the source and target language
// strings are identical and that there are no loops.
// It assumes a bunch of other things about where the
// epsilons will be. It tries to assert failure if you
// break these assumptions, but it may not.
// TODO - make this work
void EpsilonRemove(WordID eps);
// multiple the weights vector by the edge feature vector
// (inner product) to set the edge probabilities
template <typename V>
void Reweight(const V& weights) {
for (int i = 0; i < edges_.size(); ++i) {
Edge& e = edges_[i];
e.edge_prob_.logeq(e.feature_values_.dot(weights));
}
}
// computes inside and outside scores for each
// edge in the hypergraph
// alpha->size = edges_.size = beta->size
// returns inside prob of goal node
prob_t ComputeEdgePosteriors(double scale,EdgeProbs* posts) const;
// find the score of the very best path passing through each edge
prob_t ComputeBestPathThroughEdges(EdgeProbs* posts) const;
/* for all of the below subsets, the hg Nodes must be topo sorted already*/
// keep_nodes is an output-only param, keep_edges is in-out (more may be pruned than you asked for if the tails can't be built)
HypergraphP CreateEdgeSubset(EdgeMask & keep_edges_in_out,NodeMask &keep_nodes_out) const;
HypergraphP CreateEdgeSubset(EdgeMask & keep_edges) const;
// node keeping is final (const), edge keeping is an additional constraint which will sometimes be made stricter (and output back to you) by the absence of nodes. you may end up with some empty nodes. that is, kept edges will be made consistent with kept nodes first (but empty nodes are allowed)
HypergraphP CreateNodeSubset(NodeMask const& keep_nodes,EdgeMask &keep_edges_in_out) const {
TightenEdgeMask(keep_edges_in_out,keep_nodes);
return CreateNodeEdgeSubset(keep_nodes,keep_edges_in_out);
}
HypergraphP CreateNodeSubset(NodeMask const& keep_nodes) const {
EdgeMask ke(edges_.size(),true);
return CreateNodeSubset(keep_nodes,ke);
}
void TightenEdgeMask(EdgeMask &ke,NodeMask const& kn) const;
// kept edges are consistent with kept nodes already:
HypergraphP CreateNodeEdgeSubset(NodeMask const& keep_nodes,EdgeMask const&keep_edges_in_out) const;
HypergraphP CreateNodeEdgeSubset(NodeMask const& keep_nodes) const;
// create a new hypergraph consisting only of the nodes / edges
// in the Viterbi derivation of this hypergraph
// if edges is set, use the EdgeSelectEdgeWeightFunction
// NOTE: last edge/node index are goal
HypergraphP CreateViterbiHypergraph(const EdgeMask* edges = NULL) const;
// move weights as near to the source as possible, resulting in a
// stochastic automaton. ONLY FUNCTIONAL FOR *LATTICES*.
// See M. Mohri and M. Riley. A Weight Pushing Algorithm for Large
// Vocabulary Speech Recognition. 2001.
// the log semiring (NOT tropical) is used
void PushWeightsToSource(double scale = 1.0);
// same, except weights are pushed to the goal, works for HGs,
// not just lattices
void PushWeightsToGoal(double scale = 1.0);
// contrary to PushWeightsToGoal, use viterbi semiring; store log(p) to fid. note that p_viterbi becomes 1; k*p_viterbi becomes k. also modifies edge_prob_ (note that the fid stored log(p) will stick around even if you reweight)
// afterwards, product of edge_prob_ for a derivation will equal 1 for the viterbi (p_v before, 1 after), and in general (k*p_v before, k after). returns inside(goal)
prob_t PushViterbiWeightsToGoal(int fid=0);
// void SortInEdgesByEdgeWeights(); // local sort only - pretty useless
void PruneUnreachable(int goal_node_id); // DEPRECATED
void RemoveNoncoaccessibleStates(int goal_node_id = -1);
// remove edges from the hypergraph if prune_edge[edge_id] is true
// note: if run_inside_algorithm is false, then consumers may be unhappy if you pruned nodes that are built on by nodes that are kept.
void PruneEdges(const EdgeMask& prune_edge, bool run_inside_algorithm = false);
/// drop edge i if edge_margin[i] < prune_below, unless preserve_mask[i]
void MarginPrune(EdgeProbs const& edge_margin,prob_t prune_below,EdgeMask const* preserve_mask=0,bool safe_inside=false,bool verbose=false);
// promise[i]=((max_marginal[i]/viterbi)^power).todouble. if normalize, ensure that avg promise is 1.
void SetPromise(NodeProbs const& inside,NodeProbs const& outside, double power=1, bool normalize=true);
//TODO: in my opinion, looking at the ratio of logprobs (features \dot weights) rather than the absolute difference generalizes more nicely across sentence lengths and weight vectors that are constant multiples of one another. at least make that an option. i worked around this a little in cdec by making "beam alpha per source word" but that's not helping with different tuning runs. this would also make me more comfortable about allocating Node.promise
// beam_alpha=0 means don't beam prune, otherwise drop things that are e^beam_alpha times worse than best - // prunes any edge whose prob_t on the best path taking that edge is more than e^alpha times
//density=0 means don't density prune: // for density>=1.0, keep this many times the edges needed for the 1best derivation
// worse than the score of the global best past (or the highest edge posterior)
// scale is for use_sum_prod_semiring (sharpens distribution?)
// promise_power is for a call to SetPromise (no call happens if power=0)
// returns true if density pruning was tighter than beam
// safe_inside would be a redundant anti-rounding error second bottom-up reachability before actually removing edges, to prevent stranded edges. shouldn't be needed - if the hyperedges occur in defined-before-use (all edges with head h occur before h is used as a tail) order, then a grace margin for keeping edges that starts leniently and becomes more forbidding will make it impossible for this to occur, i.e. safe_inside=true is not needed.
bool PruneInsideOutside(double beam_alpha,double density,const EdgeMask* preserve_mask = NULL,const bool use_sum_prod_semiring=false, const double scale=1,double promise_power=0,bool safe_inside=false);
// legacy:
void DensityPruneInsideOutside(const double scale, const bool use_sum_prod_semiring, const double density,const EdgeMask* preserve_mask = NULL) {
PruneInsideOutside(0,density,preserve_mask,use_sum_prod_semiring,scale);
}
// legacy:
void BeamPruneInsideOutside(const double scale, const bool use_sum_prod_semiring, const double alpha,const EdgeMask* preserve_mask = NULL) {
PruneInsideOutside(alpha,0,preserve_mask,use_sum_prod_semiring,scale);
}
// report nodes, edges, paths
std::string stats(std::string const& name="forest") const;
void clear() {
nodes_.clear();
edges_.clear();
}
inline size_t NumberOfEdges() const { return edges_.size(); }
inline size_t NumberOfNodes() const { return nodes_.size(); }
inline bool empty() const { return nodes_.empty(); }
// linear chains can be represented in a number of ways in a hypergraph,
// we define them to consist only of lexical translations and monotonic rules
inline bool IsLinearChain() const { return is_linear_chain_; }
bool is_linear_chain_;
// nodes_ is sorted in topological order
typedef std::vector<Node> Nodes;
Nodes nodes_;
// edges_ is not guaranteed to be in any particular order
typedef std::vector<Edge> Edges;
Edges edges_;
bool edges_topo_; // TODO: this is always true right now - should reflect whether edges_ are ordered. typically, you can just iterate over nodes (which are in topo order) and use in_edges to get the edges in topo order
template <class V>
void visit_edges_topo(V &v) {
for (int i = 0; i < nodes_.size(); ++i) {
EdgesVector const& in=nodes_[i].in_edges_;
for (int j=0;j<in.size();++j) {
int e=in[j];
v(i,e,edges_[e]);
}
}
}
template <class V>
void visit_edges(V &v) {
for (int i=0;i<edges_.size();++i)
v(edges_[i].head_node_,i,edges_[i]);
}
// reorder nodes_ so they are in topological order
// source nodes at 0 sink nodes at size-1
void TopologicallySortNodesAndEdges(int goal_idx, const EdgeMask* prune_edges = NULL);
void set_ids(); // resync edge,node .id_
void check_ids() const; // assert that .id_ have been kept in sync
private:
Hypergraph(int num_nodes, int num_edges, bool is_lc) : is_linear_chain_(is_lc), nodes_(num_nodes), edges_(num_edges),edges_topo_(true) {}
static TRulePtr kEPSRule;
static TRulePtr kUnaryRule;
};
// common WeightFunctions, map an edge -> WeightType
// for generic Viterbi/Inside algorithms
struct EdgeProb {
typedef prob_t Weight;
inline const prob_t& operator()(const Hypergraph::Edge& e) const { return e.edge_prob_; }
};
struct EdgeSelectEdgeWeightFunction {
typedef prob_t Weight;
typedef std::vector<bool> EdgeMask;
EdgeSelectEdgeWeightFunction(const EdgeMask& v) : v_(v) {}
inline prob_t operator()(const Hypergraph::Edge& e) const {
if (v_[e.id_]) return prob_t::One();
else return prob_t::Zero();
}
private:
const EdgeMask& v_;
};
struct ScaledEdgeProb {
ScaledEdgeProb(const double& alpha) : alpha_(alpha) {}
inline prob_t operator()(const Hypergraph::Edge& e) const { return e.edge_prob_.pow(alpha_); }
const double alpha_;
typedef prob_t Weight;
};
// see Li (2010), Section 3.2.2-- this is 'x_e = p_e*r_e'
struct EdgeFeaturesAndProbWeightFunction {
typedef SparseVector<prob_t> Weight;
typedef Weight Result; //TODO: change Result->Weight everywhere?
inline const Weight operator()(const Hypergraph::Edge& e) const {
SparseVector<prob_t> res;
for (SparseVector<double>::const_iterator it = e.feature_values_.begin();
it != e.feature_values_.end(); ++it)
res.set_value(it->first, prob_t(it->second) * e.edge_prob_);
return res;
}
};
struct TransitionCountWeightFunction {
typedef double Weight;
inline double operator()(const Hypergraph::Edge& e) const { (void)e; return 1.0; }
};
#endif
|