summaryrefslogtreecommitdiff
path: root/word-aligner/binderiv.cc
diff options
context:
space:
mode:
Diffstat (limited to 'word-aligner/binderiv.cc')
-rw-r--r--word-aligner/binderiv.cc202
1 files changed, 202 insertions, 0 deletions
diff --git a/word-aligner/binderiv.cc b/word-aligner/binderiv.cc
new file mode 100644
index 00000000..8ebc1105
--- /dev/null
+++ b/word-aligner/binderiv.cc
@@ -0,0 +1,202 @@
+#include <iostream>
+#include <string>
+#include <queue>
+#include <sstream>
+
+#include "alignment_io.h"
+#include "tdict.h"
+
+using namespace std;
+
+enum CombinationType {
+ kNONE = 0,
+ kAXIOM,
+ kMONO, kSWAP, kCONTAINS_L, kCONTAINS_R, kINTERLEAVE
+};
+
+string nm(CombinationType x) {
+ switch (x) {
+ case kNONE: return "NONE";
+ case kAXIOM: return "AXIOM";
+ case kMONO: return "MONO";
+ case kSWAP: return "SWAP";
+ case kCONTAINS_L: return "CONTAINS_L";
+ case kCONTAINS_R: return "CONTAINS_R";
+ case kINTERLEAVE: return "INTERLEAVE";
+ }
+}
+
+string Substring(const vector<WordID>& s, unsigned i, unsigned j) {
+ ostringstream os;
+ for (unsigned k = i; k < j; ++k) {
+ if (k > i) os << ' ';
+ os << TD::Convert(s[k]);
+ }
+ return os.str();
+}
+
+inline int min4(int a, int b, int c, int d) {
+ int l = a;
+ if (b < a) l = b;
+ int l2 = c;
+ if (d < c) l2 = c;
+ return min(l, l2);
+}
+
+inline int max4(int a, int b, int c, int d) {
+ int l = a;
+ if (b > a) l = b;
+ int l2 = c;
+ if (d > c) l2 = d;
+ return max(l, l2);
+}
+
+struct State {
+ int s,t,u,v;
+ State() : s(), t(), u(), v() {}
+ State(int a, int b, int c, int d) : s(a), t(b), u(c), v(d) {
+ assert(s <= t);
+ assert(u <= v);
+ }
+ bool IsGood() const {
+ return (s != 0 || t != 0 || u != 0 || v != 0);
+ }
+ CombinationType operator&(const State& r) const {
+ if (r.s != t) return kNONE;
+ if (v <= r.u) return kMONO;
+ if (r.v <= u) return kSWAP;
+ if (v >= r.v && u <= r.u) return kCONTAINS_R;
+ if (r.v >= v && r.u <= u) return kCONTAINS_L;
+ return kINTERLEAVE;
+ }
+ State& operator*=(const State& r) {
+ assert(r.s == t);
+ t = r.t;
+ const int tu = min4(u, v, r.u, r.v);
+ v = max4(u, v, r.u, r.v);
+ u = tu;
+ return *this;
+ }
+};
+
+double score(CombinationType x) {
+ switch (x) {
+ case kNONE: return 0.0;
+ case kAXIOM: return 1.0;
+ case kMONO: return 16.0;
+ case kSWAP: return 8.0;
+ case kCONTAINS_R: return 4.0;
+ case kCONTAINS_L: return 2.0;
+ case kINTERLEAVE: return 1.0;
+ }
+}
+
+State operator*(const State& l, const State& r) {
+ State res = l;
+ res *= r;
+ return res;
+}
+
+ostream& operator<<(ostream& os, const State& s) {
+ return os << '[' << s.s << ", " << s.t << ", " << s.u << ", " << s.v << ']';
+}
+
+string NT(const State& s) {
+ bool decorate=true;
+ if (decorate) {
+ ostringstream os;
+ os << "[X_" << s.s << '_' << s.t << '_' << s.u << '_' << s.v << "]";
+ return os.str();
+ } else {
+ return "[X]";
+ }
+}
+
+void CreateEdge(const vector<WordID>& f, const vector<WordID>& e, CombinationType ct, const State& cur, const State& left, const State& right) {
+ switch(ct) {
+ case kINTERLEAVE:
+ case kAXIOM:
+ cerr << NT(cur) << " ||| " << Substring(f, cur.s, cur.t) << " ||| " << Substring(e, cur.u, cur.v) << "\n";
+ break;
+ case kMONO:
+ cerr << NT(cur) << " ||| " << NT(left) << ' ' << NT(right) << " ||| [1] [2]\n";
+ break;
+ case kSWAP:
+ cerr << NT(cur) << " ||| " << NT(left) << ' ' << NT(right) << " ||| [2] [1]\n";
+ break;
+ case kCONTAINS_L:
+ cerr << NT(cur) << " ||| " << Substring(f, right.s, left.s) << ' ' << NT(left) << ' ' << Substring(f, left.t, right.t) << " ||| " << Substring(e, right.u, left.u) << " [1] " << Substring(e, left.v, right.v) << endl;
+ break;
+ case kCONTAINS_R:
+ cerr << NT(cur) << " ||| " << Substring(f, left.s, right.s) << ' ' << NT(right) << ' ' << Substring(f, right.t, left.t) << " ||| " << Substring(e, left.u, right.u) << " [1] " << Substring(e, right.v, left.v) << endl;
+ break;
+ }
+}
+
+void BuildArity2Forest(const vector<WordID>& f, const vector<WordID>& e, const vector<State>& axioms) {
+ const unsigned n = f.size();
+ Array2D<State> chart(n, n+1);
+ Array2D<CombinationType> ctypes(n, n+1);
+ Array2D<double> cscore(n, n+1);
+ Array2D<int> cmids(n, n+1, -1);
+ for (const auto& axiom : axioms) {
+ chart(axiom.s, axiom.t) = axiom;
+ ctypes(axiom.s, axiom.t) = kAXIOM;
+ cscore(axiom.s, axiom.t) = 1.0;
+ CreateEdge(f, e, kAXIOM, axiom, axiom, axiom);
+ //cerr << "AXIOM " << axiom.s << ", " << axiom.t << " : " << chart(axiom.s, axiom.t) << " : " << 1 << endl;
+ }
+ for (unsigned l = 2; l <= n; ++l) {
+ const unsigned i_end = n + 1 - l;
+ for (unsigned i = 0; i < i_end; ++i) {
+ const unsigned j = i + l;
+ for (unsigned k = i + 1; k < j; ++k) {
+ const State& left = chart(i, k);
+ const State& right = chart(k, j);
+ if (!left.IsGood() || !right.IsGood()) continue;
+ CombinationType comb = left & right;
+ if (comb != kNONE) {
+ double ns = cscore(i,k) + cscore(k,j) + score(comb);
+ if (ns > cscore(i,j)) {
+ cscore(i,j) = ns;
+ chart(i,j) = left * right;
+ cmids(i,j) = k;
+ ctypes(i,j) = comb;
+ //cerr << "PROVED " << chart(i,j) << " : " << cscore(i,j) << " [" << nm(comb) << " " << left << " * " << right << "]\n";
+ } else {
+ //cerr << "SUBOPTIMAL " << (left*right) << " : " << ns << " [" << nm(comb) << " " << left << " * " << right << "]\n";
+ }
+ CreateEdge(f, e, comb, left * right, left, right);
+ } else {
+ //cerr << "CAN'T " << left << " * " << right << endl;
+ }
+ }
+ }
+ }
+}
+
+int main(int argc, char** argv) {
+ State s;
+ vector<WordID> e,f;
+ TD::ConvertSentence("B C that A", &e);
+ TD::ConvertSentence("A de B C", &f);
+ State w0(0,1,3,4), w1(1,2,2,3), w2(2,3,0,1), w3(3,4,1,2);
+ vector<State> al = {w0, w1, w2, w3};
+ // f cannot have any unaligned words, however, multiple overlapping axioms are possible
+ // so you can write code to align unaligned words in all ways to surrounding words
+ BuildArity2Forest(f, e, al);
+
+ TD::ConvertSentence("A B C D", &e);
+ TD::ConvertSentence("A B , C D", &f);
+ vector<State> al2 = {State(0,1,0,1), State(1,2,1,2), State(1,3,1,2), State(2,4,2,3), State(4,5,3,4)};
+ BuildArity2Forest(f, e, al2);
+
+ TD::ConvertSentence("A B C D", &e);
+ TD::ConvertSentence("C A D B", &f);
+ vector<State> al3 = {State(0,1,2,3), State(1,2,0,1), State(2,3,3,4), State(3,4,1,2)};
+ BuildArity2Forest(f, e, al3);
+
+ // things to do: run EM, do posterior inference with a Dirichlet prior, etc.
+ return 0;
+}
+