summaryrefslogtreecommitdiff
path: root/utils/synutils/tsuruoka_maxent.h
diff options
context:
space:
mode:
Diffstat (limited to 'utils/synutils/tsuruoka_maxent.h')
-rw-r--r--utils/synutils/tsuruoka_maxent.h160
1 files changed, 160 insertions, 0 deletions
diff --git a/utils/synutils/tsuruoka_maxent.h b/utils/synutils/tsuruoka_maxent.h
new file mode 100644
index 00000000..790876ab
--- /dev/null
+++ b/utils/synutils/tsuruoka_maxent.h
@@ -0,0 +1,160 @@
+/*
+ * tsuruoka_maxent.h
+ *
+ */
+
+#ifndef TSURUOKA_MAXENT_H_
+#define TSURUOKA_MAXENT_H_
+
+#include "utility.h"
+#include "stringlib.h"
+#include "maxent-3.0/maxent.h"
+
+#include <assert.h>
+#include <vector>
+#include <string>
+#include <string.h>
+#include <tr1/unordered_map>
+
+using namespace std;
+
+
+typedef std::tr1::unordered_map<std::string, int> Map;
+typedef std::tr1::unordered_map<std::string, int>::iterator Iterator;
+
+
+
+struct Tsuruoka_Maxent{
+ Tsuruoka_Maxent(const char* pszModelFName) {
+ if (pszModelFName != NULL) {
+ m_pModel = new ME_Model();
+ m_pModel->load_from_file(pszModelFName);
+ } else
+ m_pModel = NULL;
+ }
+
+ ~Tsuruoka_Maxent() {
+ if (m_pModel != NULL)
+ delete m_pModel;
+ }
+
+ void fnTrain(const char* pszInstanceFName, const char* pszAlgorithm, const char* pszModelFName, int iNumIteration) {
+ assert(strcmp(pszAlgorithm, "l1") == 0
+ || strcmp(pszAlgorithm, "l2") == 0
+ || strcmp(pszAlgorithm, "sgd") == 0
+ || strcmp(pszAlgorithm, "SGD") == 0);
+ FILE *fpIn = fopen(pszInstanceFName, "r");
+
+ ME_Model *pModel = new ME_Model();
+
+ char *pszLine = new char[100001];
+ int iNumInstances = 0;
+ int iLen;
+ while (!feof(fpIn)) {
+ pszLine[0] = '\0';
+ fgets(pszLine, 20000, fpIn);
+ if (strlen(pszLine) == 0) {
+ continue;
+ }
+
+ iLen = strlen(pszLine);
+ while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen -1] < 33) {
+ pszLine[ iLen - 1 ] = '\0';
+ iLen--;
+ }
+
+
+ iNumInstances++;
+
+ ME_Sample *pmes = new ME_Sample();
+
+ char *p = strrchr(pszLine, ' ');
+ assert(p != NULL);
+ p[0] = '\0';
+ p++;
+ vector<string> vecContext;
+ SplitOnWhitespace(string(pszLine), &vecContext);
+
+ pmes->label = string(p);
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ pModel->add_training_sample((*pmes));
+ if (iNumInstances % 100000 == 0)
+ fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
+ delete pmes;
+ }
+ fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
+ fclose(fpIn);
+
+ if (strcmp(pszAlgorithm, "l1") == 0)
+ pModel->use_l1_regularizer(1.0);
+ else if (strcmp(pszAlgorithm, "l2") == 0)
+ pModel->use_l2_regularizer(1.0);
+ else
+ pModel->use_SGD();
+
+ pModel->train();
+ pModel->save_to_file(pszModelFName);
+
+ delete pModel;
+ fprintf(stdout, "......Finished Training\n");
+ fprintf(stdout, "......Model saved as %s\n", pszModelFName);
+ delete [] pszLine;
+ }
+
+ double fnEval(const char* pszContext, const char* pszOutcome) const {
+ vector<string> vecContext;
+ ME_Sample *pmes = new ME_Sample();
+ SplitOnWhitespace(string(pszContext), &vecContext);
+
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ vector<double> vecProb = m_pModel->classify(*pmes);
+ delete pmes;
+ int iLableID = m_pModel->get_class_id(pszOutcome);
+ return vecProb[iLableID];
+ }
+ void fnEval(const char* pszContext, vector<pair<string, double> >& vecOutput) const {
+ vector<string> vecContext;
+ ME_Sample *pmes = new ME_Sample();
+ SplitOnWhitespace(string(pszContext), &vecContext);
+
+ vecOutput.clear();
+
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ vector<double> vecProb = m_pModel->classify(*pmes);
+
+ for (size_t i = 0; i < vecProb.size(); i++) {
+ string label = m_pModel->get_class_label(i);
+ vecOutput.push_back(make_pair(label, vecProb[i]));
+ }
+ delete pmes;
+ }
+ void fnEval(const char* pszContext, vector<double>& vecOutput) const{
+ vector<string> vecContext;
+ ME_Sample *pmes = new ME_Sample();
+ SplitOnWhitespace(string(pszContext), &vecContext);
+
+ vecOutput.clear();
+
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ vector<double> vecProb = m_pModel->classify(*pmes);
+
+ for (size_t i = 0; i < vecProb.size(); i++) {
+ string label = m_pModel->get_class_label(i);
+ vecOutput.push_back(vecProb[i]);
+ }
+ delete pmes;
+ }
+ int fnGetClassId(const string& strLabel) const {
+ return m_pModel->get_class_id(strLabel);
+ }
+private:
+ ME_Model *m_pModel;
+};
+
+
+
+#endif /* TSURUOKA_MAXENT_H_ */