summaryrefslogtreecommitdiff
path: root/utils/synutils/tsuruoka_maxent.h
diff options
context:
space:
mode:
Diffstat (limited to 'utils/synutils/tsuruoka_maxent.h')
-rw-r--r--utils/synutils/tsuruoka_maxent.h263
1 files changed, 129 insertions, 134 deletions
diff --git a/utils/synutils/tsuruoka_maxent.h b/utils/synutils/tsuruoka_maxent.h
index 790876ab..b5a87404 100644
--- a/utils/synutils/tsuruoka_maxent.h
+++ b/utils/synutils/tsuruoka_maxent.h
@@ -18,143 +18,138 @@
using namespace std;
-
typedef std::tr1::unordered_map<std::string, int> Map;
typedef std::tr1::unordered_map<std::string, int>::iterator Iterator;
-
-
-struct Tsuruoka_Maxent{
- Tsuruoka_Maxent(const char* pszModelFName) {
- if (pszModelFName != NULL) {
- m_pModel = new ME_Model();
- m_pModel->load_from_file(pszModelFName);
- } else
- m_pModel = NULL;
- }
-
- ~Tsuruoka_Maxent() {
- if (m_pModel != NULL)
- delete m_pModel;
- }
-
- void fnTrain(const char* pszInstanceFName, const char* pszAlgorithm, const char* pszModelFName, int iNumIteration) {
- assert(strcmp(pszAlgorithm, "l1") == 0
- || strcmp(pszAlgorithm, "l2") == 0
- || strcmp(pszAlgorithm, "sgd") == 0
- || strcmp(pszAlgorithm, "SGD") == 0);
- FILE *fpIn = fopen(pszInstanceFName, "r");
-
- ME_Model *pModel = new ME_Model();
-
- char *pszLine = new char[100001];
- int iNumInstances = 0;
- int iLen;
- while (!feof(fpIn)) {
- pszLine[0] = '\0';
- fgets(pszLine, 20000, fpIn);
- if (strlen(pszLine) == 0) {
- continue;
- }
-
- iLen = strlen(pszLine);
- while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen -1] < 33) {
- pszLine[ iLen - 1 ] = '\0';
- iLen--;
- }
-
-
- iNumInstances++;
-
- ME_Sample *pmes = new ME_Sample();
-
- char *p = strrchr(pszLine, ' ');
- assert(p != NULL);
- p[0] = '\0';
- p++;
- vector<string> vecContext;
- SplitOnWhitespace(string(pszLine), &vecContext);
-
- pmes->label = string(p);
- for (size_t i = 0; i < vecContext.size(); i++)
- pmes->add_feature(vecContext[i]);
- pModel->add_training_sample((*pmes));
- if (iNumInstances % 100000 == 0)
- fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
- delete pmes;
- }
- fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
- fclose(fpIn);
-
- if (strcmp(pszAlgorithm, "l1") == 0)
- pModel->use_l1_regularizer(1.0);
- else if (strcmp(pszAlgorithm, "l2") == 0)
- pModel->use_l2_regularizer(1.0);
- else
- pModel->use_SGD();
-
- pModel->train();
- pModel->save_to_file(pszModelFName);
-
- delete pModel;
- fprintf(stdout, "......Finished Training\n");
- fprintf(stdout, "......Model saved as %s\n", pszModelFName);
- delete [] pszLine;
- }
-
- double fnEval(const char* pszContext, const char* pszOutcome) const {
- vector<string> vecContext;
- ME_Sample *pmes = new ME_Sample();
- SplitOnWhitespace(string(pszContext), &vecContext);
-
- for (size_t i = 0; i < vecContext.size(); i++)
- pmes->add_feature(vecContext[i]);
- vector<double> vecProb = m_pModel->classify(*pmes);
- delete pmes;
- int iLableID = m_pModel->get_class_id(pszOutcome);
- return vecProb[iLableID];
- }
- void fnEval(const char* pszContext, vector<pair<string, double> >& vecOutput) const {
- vector<string> vecContext;
- ME_Sample *pmes = new ME_Sample();
- SplitOnWhitespace(string(pszContext), &vecContext);
-
- vecOutput.clear();
-
- for (size_t i = 0; i < vecContext.size(); i++)
- pmes->add_feature(vecContext[i]);
- vector<double> vecProb = m_pModel->classify(*pmes);
-
- for (size_t i = 0; i < vecProb.size(); i++) {
- string label = m_pModel->get_class_label(i);
- vecOutput.push_back(make_pair(label, vecProb[i]));
- }
- delete pmes;
- }
- void fnEval(const char* pszContext, vector<double>& vecOutput) const{
- vector<string> vecContext;
- ME_Sample *pmes = new ME_Sample();
- SplitOnWhitespace(string(pszContext), &vecContext);
-
- vecOutput.clear();
-
- for (size_t i = 0; i < vecContext.size(); i++)
- pmes->add_feature(vecContext[i]);
- vector<double> vecProb = m_pModel->classify(*pmes);
-
- for (size_t i = 0; i < vecProb.size(); i++) {
- string label = m_pModel->get_class_label(i);
- vecOutput.push_back(vecProb[i]);
- }
- delete pmes;
- }
- int fnGetClassId(const string& strLabel) const {
- return m_pModel->get_class_id(strLabel);
- }
-private:
- ME_Model *m_pModel;
+struct Tsuruoka_Maxent {
+ Tsuruoka_Maxent(const char* pszModelFName) {
+ if (pszModelFName != NULL) {
+ m_pModel = new ME_Model();
+ m_pModel->load_from_file(pszModelFName);
+ } else
+ m_pModel = NULL;
+ }
+
+ ~Tsuruoka_Maxent() {
+ if (m_pModel != NULL) delete m_pModel;
+ }
+
+ void fnTrain(const char* pszInstanceFName, const char* pszAlgorithm,
+ const char* pszModelFName, int iNumIteration) {
+ assert(strcmp(pszAlgorithm, "l1") == 0 || strcmp(pszAlgorithm, "l2") == 0 ||
+ strcmp(pszAlgorithm, "sgd") == 0 ||
+ strcmp(pszAlgorithm, "SGD") == 0);
+ FILE* fpIn = fopen(pszInstanceFName, "r");
+
+ ME_Model* pModel = new ME_Model();
+
+ char* pszLine = new char[100001];
+ int iNumInstances = 0;
+ int iLen;
+ while (!feof(fpIn)) {
+ pszLine[0] = '\0';
+ fgets(pszLine, 20000, fpIn);
+ if (strlen(pszLine) == 0) {
+ continue;
+ }
+
+ iLen = strlen(pszLine);
+ while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen - 1] < 33) {
+ pszLine[iLen - 1] = '\0';
+ iLen--;
+ }
+
+ iNumInstances++;
+
+ ME_Sample* pmes = new ME_Sample();
+
+ char* p = strrchr(pszLine, ' ');
+ assert(p != NULL);
+ p[0] = '\0';
+ p++;
+ vector<string> vecContext;
+ SplitOnWhitespace(string(pszLine), &vecContext);
+
+ pmes->label = string(p);
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ pModel->add_training_sample((*pmes));
+ if (iNumInstances % 100000 == 0)
+ fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
+ delete pmes;
+ }
+ fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
+ fclose(fpIn);
+
+ if (strcmp(pszAlgorithm, "l1") == 0)
+ pModel->use_l1_regularizer(1.0);
+ else if (strcmp(pszAlgorithm, "l2") == 0)
+ pModel->use_l2_regularizer(1.0);
+ else
+ pModel->use_SGD();
+
+ pModel->train();
+ pModel->save_to_file(pszModelFName);
+
+ delete pModel;
+ fprintf(stdout, "......Finished Training\n");
+ fprintf(stdout, "......Model saved as %s\n", pszModelFName);
+ delete[] pszLine;
+ }
+
+ double fnEval(const char* pszContext, const char* pszOutcome) const {
+ vector<string> vecContext;
+ ME_Sample* pmes = new ME_Sample();
+ SplitOnWhitespace(string(pszContext), &vecContext);
+
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ vector<double> vecProb = m_pModel->classify(*pmes);
+ delete pmes;
+ int iLableID = m_pModel->get_class_id(pszOutcome);
+ return vecProb[iLableID];
+ }
+ void fnEval(const char* pszContext,
+ vector<pair<string, double> >& vecOutput) const {
+ vector<string> vecContext;
+ ME_Sample* pmes = new ME_Sample();
+ SplitOnWhitespace(string(pszContext), &vecContext);
+
+ vecOutput.clear();
+
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ vector<double> vecProb = m_pModel->classify(*pmes);
+
+ for (size_t i = 0; i < vecProb.size(); i++) {
+ string label = m_pModel->get_class_label(i);
+ vecOutput.push_back(make_pair(label, vecProb[i]));
+ }
+ delete pmes;
+ }
+ void fnEval(const char* pszContext, vector<double>& vecOutput) const {
+ vector<string> vecContext;
+ ME_Sample* pmes = new ME_Sample();
+ SplitOnWhitespace(string(pszContext), &vecContext);
+
+ vecOutput.clear();
+
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ vector<double> vecProb = m_pModel->classify(*pmes);
+
+ for (size_t i = 0; i < vecProb.size(); i++) {
+ string label = m_pModel->get_class_label(i);
+ vecOutput.push_back(vecProb[i]);
+ }
+ delete pmes;
+ }
+ int fnGetClassId(const string& strLabel) const {
+ return m_pModel->get_class_id(strLabel);
+ }
+
+ private:
+ ME_Model* m_pModel;
};
-
-
#endif /* TSURUOKA_MAXENT_H_ */