diff options
Diffstat (limited to 'utils/sampler.h')
-rw-r--r-- | utils/sampler.h | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/utils/sampler.h b/utils/sampler.h new file mode 100644 index 00000000..5fef45d0 --- /dev/null +++ b/utils/sampler.h @@ -0,0 +1,147 @@ +#ifndef SAMPLER_H_ +#define SAMPLER_H_ + +#include <algorithm> +#include <functional> +#include <numeric> +#include <iostream> +#include <fstream> +#include <vector> +#include <ctime> + +#include <boost/random/mersenne_twister.hpp> +#include <boost/random/uniform_real.hpp> +#include <boost/random/variate_generator.hpp> +#include <boost/random/normal_distribution.hpp> +#include <boost/random/poisson_distribution.hpp> +#include <boost/random/uniform_int.hpp> + +#include "prob.h" + +struct SampleSet; + +template <typename RNG> +struct RandomNumberGenerator { + static uint32_t GetTrulyRandomSeed() { + uint32_t seed; + std::ifstream r("/dev/urandom"); + if (r) { + r.read((char*)&seed,sizeof(uint32_t)); + } + if (r.fail() || !r) { + std::cerr << "Warning: could not read from /dev/urandom. Seeding from clock" << std::endl; + seed = std::time(NULL); + } + std::cerr << "Seeding random number sequence to " << seed << std::endl; + return seed; + } + + RandomNumberGenerator() : m_dist(0,1), m_generator(), m_random(m_generator,m_dist) { + uint32_t seed = GetTrulyRandomSeed(); + m_generator.seed(seed); + } + explicit RandomNumberGenerator(uint32_t seed) : m_dist(0,1), m_generator(), m_random(m_generator,m_dist) { + if (!seed) seed = GetTrulyRandomSeed(); + m_generator.seed(seed); + } + + size_t SelectSample(const prob_t& a, const prob_t& b, double T = 1.0) { + if (T == 1.0) { + if (this->next() > (a / (a + b))) return 1; else return 0; + } else { + assert(!"not implemented"); + } + } + + // T is the annealing temperature, if desired + size_t SelectSample(const SampleSet& ss, double T = 1.0); + + // draw a value from U(0,1) + double next() {return m_random();} + + // draw a value from N(mean,var) + double NextNormal(double mean, double var) { + return boost::normal_distribution<double>(mean, var)(m_random); + } + + // draw a value from a Poisson distribution + // lambda must be greater than 0 + int NextPoisson(int lambda) { + return boost::poisson_distribution<int>(lambda)(m_random); + } + + bool AcceptMetropolisHastings(const prob_t& p_cur, + const prob_t& p_prev, + const prob_t& q_cur, + const prob_t& q_prev) { + const prob_t a = (p_cur / p_prev) * (q_prev / q_cur); + if (log(a) >= 0.0) return true; + return (prob_t(this->next()) < a); + } + + RNG &gen() { return m_generator; } + typedef boost::variate_generator<RNG&, boost::uniform_int<> > IntRNG; + IntRNG inclusive(int low,int high_incl) { + assert(high_incl>=low); + return IntRNG(m_generator,boost::uniform_int<>(low,high_incl)); + } + + private: + boost::uniform_real<> m_dist; + RNG m_generator; + boost::variate_generator<RNG&, boost::uniform_real<> > m_random; +}; + +typedef RandomNumberGenerator<boost::mt19937> MT19937; + +class SampleSet { + public: + const prob_t& operator[](int i) const { return m_scores[i]; } + prob_t& operator[](int i) { return m_scores[i]; } + bool empty() const { return m_scores.empty(); } + void add(const prob_t& s) { m_scores.push_back(s); } + void clear() { m_scores.clear(); } + size_t size() const { return m_scores.size(); } + void resize(int size) { m_scores.resize(size); } + std::vector<prob_t> m_scores; +}; + +template <typename RNG> +size_t RandomNumberGenerator<RNG>::SelectSample(const SampleSet& ss, double T) { + assert(T > 0.0); + assert(ss.m_scores.size() > 0); + if (ss.m_scores.size() == 1) return 0; + const prob_t annealing_factor(1.0 / T); + const bool anneal = (annealing_factor != prob_t::One()); + prob_t sum = prob_t::Zero(); + if (anneal) { + for (int i = 0; i < ss.m_scores.size(); ++i) + sum += ss.m_scores[i].pow(annealing_factor); // p^(1/T) + } else { + sum = std::accumulate(ss.m_scores.begin(), ss.m_scores.end(), prob_t::Zero()); + } + //for (size_t i = 0; i < ss.m_scores.size(); ++i) std::cerr << ss.m_scores[i] << ","; + //std::cerr << std::endl; + + prob_t random(this->next()); // random number between 0 and 1 + random *= sum; // scale with normalization factor + //std::cerr << "Random number " << random << std::endl; + + //now figure out which sample + size_t position = 1; + sum = ss.m_scores[0]; + if (anneal) { + sum.poweq(annealing_factor); + for (; position < ss.m_scores.size() && sum < random; ++position) + sum += ss.m_scores[position].pow(annealing_factor); + } else { + for (; position < ss.m_scores.size() && sum < random; ++position) + sum += ss.m_scores[position]; + } + //std::cout << "random: " << random << " sample: " << position << std::endl; + //std::cerr << "Sample: " << position-1 << std::endl; + //exit(1); + return position-1; +} + +#endif |