diff options
Diffstat (limited to 'utils/mfcr.h')
-rw-r--r-- | utils/mfcr.h | 354 |
1 files changed, 354 insertions, 0 deletions
diff --git a/utils/mfcr.h b/utils/mfcr.h new file mode 100644 index 00000000..3eb133fc --- /dev/null +++ b/utils/mfcr.h @@ -0,0 +1,354 @@ +#ifndef _MFCR_H_ +#define _MFCR_H_ + +#include <algorithm> +#include <numeric> +#include <cassert> +#include <cmath> +#include <list> +#include <iostream> +#include <vector> +#include <tr1/unordered_map> +#include <boost/functional/hash.hpp> +#include "sampler.h" +#include "slice_sampler.h" + +struct TableCount { + TableCount() : count(), floor() {} + TableCount(int c, int f) : count(c), floor(f) { + assert(f >= 0); + } + int count; // count or delta (may be 0, <0, or >0) + unsigned char floor; // from which floor? +}; + +std::ostream& operator<<(std::ostream& o, const TableCount& tc) { + return o << "[c=" << tc.count << " floor=" << static_cast<unsigned int>(tc.floor) << ']'; +} + +// Multi-Floor Chinese Restaurant as proposed by Wood & Teh (AISTATS, 2009) to simulate +// graphical Pitman-Yor processes. +// http://jmlr.csail.mit.edu/proceedings/papers/v5/wood09a/wood09a.pdf +// +// Implementation is based on Blunsom, Cohn, Goldwater, & Johnson (ACL 2009) and code +// referenced therein. +// http://www.aclweb.org/anthology/P/P09/P09-2085.pdf +// +template <typename Dish, typename DishHash = boost::hash<Dish> > +class MFCR { + public: + + MFCR(unsigned num_floors, double d, double alpha) : + num_floors_(num_floors), + num_tables_(), + num_customers_(), + d_(d), + alpha_(alpha), + d_prior_alpha_(std::numeric_limits<double>::quiet_NaN()), + d_prior_beta_(std::numeric_limits<double>::quiet_NaN()), + alpha_prior_shape_(std::numeric_limits<double>::quiet_NaN()), + alpha_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {} + + MFCR(unsigned num_floors, double d_alpha, double d_beta, double alpha_shape, double alpha_rate, double d = 0.9, double alpha = 10.0) : + num_floors_(num_floors), + num_tables_(), + num_customers_(), + d_(d), + alpha_(alpha), + d_prior_alpha_(d_alpha), + d_prior_beta_(d_beta), + alpha_prior_shape_(alpha_shape), + alpha_prior_rate_(alpha_rate) {} + + double d() const { return d_; } + double alpha() const { return alpha_; } + + bool has_d_prior() const { + return !std::isnan(d_prior_alpha_); + } + + bool has_alpha_prior() const { + return !std::isnan(alpha_prior_shape_); + } + + void clear() { + num_tables_ = 0; + num_customers_ = 0; + dish_locs_.clear(); + } + + unsigned num_tables() const { + return num_tables_; + } + + unsigned num_tables(const Dish& dish) const { + const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish); + if (it == dish_locs_.end()) return 0; + return it->second.table_counts_.size(); + } + + // this is not terribly efficient but it should not typically be necessary to execute this query + unsigned num_tables(const Dish& dish, const unsigned floor) const { + const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish); + if (it == dish_locs_.end()) return 0; + unsigned c = 0; + for (typename std::list<TableCount>::const_iterator i = it->second.table_counts_.begin(); + i != it->second.table_counts_.end(); ++i) { + if (i->floor == floor) ++c; + } + return c; + } + + unsigned num_customers() const { + return num_customers_; + } + + unsigned num_customers(const Dish& dish) const { + const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish); + if (it == dish_locs_.end()) return 0; + return it->total_dish_count_; + } + + // returns (delta, floor) indicating whether a new table (delta) was opened and on which floor + TableCount increment(const Dish& dish, const std::vector<double>& p0s, const std::vector<double>& lambdas, MT19937* rng) { + assert(p0s.size() == num_floors_); + assert(lambdas.size() == num_floors_); + + DishLocations& loc = dish_locs_[dish]; + // marg_p0 = marginal probability of opening a new table on any floor with label dish + const double marg_p0 = std::inner_product(p0s.begin(), p0s.end(), lambdas.begin(), 0.0); + assert(marg_p0 <= 1.0); + int floor = -1; + bool share_table = false; + if (loc.total_dish_count_) { + const double p_empty = (alpha_ + num_tables_ * d_) * marg_p0; + const double p_share = (loc.total_dish_count_ - loc.table_counts_.size() * d_); + share_table = rng->SelectSample(p_empty, p_share); + } + if (share_table) { + double r = rng->next() * (loc.total_dish_count_ - loc.table_counts_.size() * d_); + for (typename std::list<TableCount>::iterator ti = loc.table_counts_.begin(); + ti != loc.table_counts_.end(); ++ti) { + r -= ti->count - d_; + if (r <= 0.0) { + ++ti->count; + floor = ti->floor; + break; + } + } + if (r > 0.0) { + std::cerr << "Serious error: r=" << r << std::endl; + Print(&std::cerr); + assert(r <= 0.0); + } + } else { // sit at currently empty table -- must sample what floor + double r = rng->next() * marg_p0; + for (unsigned i = 0; i < p0s.size(); ++i) { + r -= p0s[i] * lambdas[i]; + if (r <= 0.0) { + floor = i; + break; + } + } + assert(floor >= 0); + loc.table_counts_.push_back(TableCount(1, floor)); + ++num_tables_; + } + ++loc.total_dish_count_; + ++num_customers_; + return (share_table ? TableCount(0, floor) : TableCount(1, floor)); + } + + // returns first = -1 or 0, indicating whether a table was closed, and on what floor (second) + TableCount decrement(const Dish& dish, MT19937* rng) { + DishLocations& loc = dish_locs_[dish]; + assert(loc.total_dish_count_); + int floor = -1; + int delta = 0; + if (loc.total_dish_count_ == 1) { + floor = loc.table_counts_.front().floor; + dish_locs_.erase(dish); + --num_tables_; + --num_customers_; + delta = -1; + } else { + // sample customer to remove UNIFORMLY. that is, do NOT use the d + // here. if you do, it will introduce (unwanted) bias! + double r = rng->next() * loc.total_dish_count_; + --loc.total_dish_count_; + --num_customers_; + for (typename std::list<TableCount>::iterator ti = loc.table_counts_.begin(); + ti != loc.table_counts_.end(); ++ti) { + r -= ti->count; + if (r <= 0.0) { + floor = ti->floor; + if ((--ti->count) == 0) { + --num_tables_; + delta = -1; + loc.table_counts_.erase(ti); + } + break; + } + } + if (r > 0.0) { + std::cerr << "Serious error: r=" << r << std::endl; + Print(&std::cerr); + assert(r <= 0.0); + } + } + return TableCount(delta, floor); + } + + double prob(const Dish& dish, const std::vector<double>& p0s, const std::vector<double>& lambdas) const { + assert(p0s.size() == num_floors_); + assert(lambdas.size() == num_floors_); + const double marg_p0 = std::inner_product(p0s.begin(), p0s.end(), lambdas.begin(), 0.0); + assert(marg_p0 <= 1.0); + const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish); + const double r = num_tables_ * d_ + alpha_; + if (it == dish_locs_.end()) { + return r * marg_p0 / (num_customers_ + alpha_); + } else { + return (it->second.total_dish_count_ - d_ * it->second.table_counts_.size() + r * marg_p0) / + (num_customers_ + alpha_); + } + } + + double log_crp_prob() const { + return log_crp_prob(d_, alpha_); + } + + static double log_beta_density(const double& x, const double& alpha, const double& beta) { + assert(x > 0.0); + assert(x < 1.0); + assert(alpha > 0.0); + assert(beta > 0.0); + const double lp = (alpha-1)*log(x)+(beta-1)*log(1-x)+lgamma(alpha+beta)-lgamma(alpha)-lgamma(beta); + return lp; + } + + static double log_gamma_density(const double& x, const double& shape, const double& rate) { + assert(x >= 0.0); + assert(shape > 0.0); + assert(rate > 0.0); + const double lp = (shape-1)*log(x) - shape*log(rate) - x/rate - lgamma(shape); + return lp; + } + + // taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process + // does not include draws from G_w's + double log_crp_prob(const double& d, const double& alpha) const { + double lp = 0.0; + if (has_d_prior()) + lp = log_beta_density(d, d_prior_alpha_, d_prior_beta_); + if (has_alpha_prior()) + lp += log_gamma_density(alpha, alpha_prior_shape_, alpha_prior_rate_); + assert(lp <= 0.0); + if (num_customers_) { + if (d > 0.0) { + const double r = lgamma(1.0 - d); + lp += lgamma(alpha) - lgamma(alpha + num_customers_) + + num_tables_ * log(d) + lgamma(alpha / d + num_tables_) + - lgamma(alpha / d); + assert(std::isfinite(lp)); + for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin(); + it != dish_locs_.end(); ++it) { + const DishLocations& cur = it->second; + for (std::list<TableCount>::const_iterator ti = cur.table_counts_.begin(); ti != cur.table_counts_.end(); ++ti) { + lp += lgamma(ti->count - d) - r; + } + } + } else { + assert(!"not implemented yet"); + } + } + assert(std::isfinite(lp)); + return lp; + } + + void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) { + assert(has_d_prior() || has_alpha_prior()); + DiscountResampler dr(*this); + ConcentrationResampler cr(*this); + for (int iter = 0; iter < nloop; ++iter) { + if (has_alpha_prior()) { + alpha_ = slice_sampler1d(cr, alpha_, *rng, 0.0, + std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); + } + if (has_d_prior()) { + d_ = slice_sampler1d(dr, d_, *rng, std::numeric_limits<double>::min(), + 1.0, 0.0, niterations, 100*niterations); + } + } + alpha_ = slice_sampler1d(cr, alpha_, *rng, 0.0, + std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); + } + + struct DiscountResampler { + DiscountResampler(const MFCR& crp) : crp_(crp) {} + const MFCR& crp_; + double operator()(const double& proposed_d) const { + return crp_.log_crp_prob(proposed_d, crp_.alpha_); + } + }; + + struct ConcentrationResampler { + ConcentrationResampler(const MFCR& crp) : crp_(crp) {} + const MFCR& crp_; + double operator()(const double& proposed_alpha) const { + return crp_.log_crp_prob(crp_.d_, proposed_alpha); + } + }; + + struct DishLocations { + DishLocations() : total_dish_count_() {} + unsigned total_dish_count_; // customers at all tables with this dish + std::list<TableCount> table_counts_; // list<> gives O(1) deletion and insertion, which we want + // .size() is the number of tables for this dish + }; + + void Print(std::ostream* out) const { + (*out) << "MFCR(d=" << d_ << ",alpha=" << alpha_ << ") customers=" << num_customers_ << std::endl; + for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin(); + it != dish_locs_.end(); ++it) { + (*out) << it->first << " (" << it->second.total_dish_count_ << " on " << it->second.table_counts_.size() << " tables): "; + for (typename std::list<TableCount>::const_iterator i = it->second.table_counts_.begin(); + i != it->second.table_counts_.end(); ++i) { + (*out) << " " << *i; + } + (*out) << std::endl; + } + } + + typedef typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator const_iterator; + const_iterator begin() const { + return dish_locs_.begin(); + } + const_iterator end() const { + return dish_locs_.end(); + } + + unsigned num_floors_; + unsigned num_tables_; + unsigned num_customers_; + std::tr1::unordered_map<Dish, DishLocations, DishHash> dish_locs_; + + double d_; + double alpha_; + + // optional beta prior on d_ (NaN if no prior) + double d_prior_alpha_; + double d_prior_beta_; + + // optional gamma prior on alpha_ (NaN if no prior) + double alpha_prior_shape_; + double alpha_prior_rate_; +}; + +template <typename T,typename H> +std::ostream& operator<<(std::ostream& o, const MFCR<T,H>& c) { + c.Print(&o); + return o; +} + +#endif |