summaryrefslogtreecommitdiff
path: root/training
diff options
context:
space:
mode:
Diffstat (limited to 'training')
-rw-r--r--training/dtrain/dtrain_net_interface.cc22
1 files changed, 11 insertions, 11 deletions
diff --git a/training/dtrain/dtrain_net_interface.cc b/training/dtrain/dtrain_net_interface.cc
index 340b9a86..5c2df022 100644
--- a/training/dtrain/dtrain_net_interface.cc
+++ b/training/dtrain/dtrain_net_interface.cc
@@ -255,39 +255,39 @@ main(int argc, char** argv)
// -- debug
// get pairs
- SparseVector<weight_t> updates;
- size_t num_up = CollectUpdates(samples, updates, margin);
+ SparseVector<weight_t> update;
+ size_t num_up = CollectUpdates(samples, update, margin);
// debug --
debug_output << "\"1best_features\":\"" << (*samples)[0].f << "\"," << endl;
- debug_output << "\"update_raw\":\"" << updates << "\"," << endl;
+ debug_output << "\"update_raw\":\"" << update << "\"," << endl;
// -- debug
// update
- for (auto it: updates) {
+ for (auto it: update) {
string fname = FD::Convert(it.first);
unsigned k = it.first;
weight_t v = it.second;
if (learning_rates.find(it.first) != learning_rates.end()) {
- updates[k] = learning_rates[k]*v;
+ update[k] = learning_rates[k]*v;
} else {
if (boost::starts_with(fname, "R:")) {
- updates[k] = learning_rate_R*v;
+ update[k] = learning_rate_R*v;
} else if (boost::starts_with(fname, "RBS:") ||
boost::starts_with(fname, "RBT:")) {
- updates[k] = learning_rate_RB*v;
+ update[k] = learning_rate_RB*v;
} else if (boost::starts_with(fname, "Shape_")) {
- updates[k] = learning_rate_Shape*v;
+ update[k] = learning_rate_Shape*v;
}
}
}
- lambdas.plus_eq_v_times_s(updates, 1.0);
+ lambdas += update;
i++;
// debug --
- debug_output << "\"update\":\"" << updates << "\"," << endl;
+ debug_output << "\"update\":\"" << update << "\"," << endl;
debug_output << "\"num_up\":" << num_up << "," << endl;
- debug_output << "\"updated_features\":" << updates.size() << "," << endl;
+ debug_output << "\"updated_features\":" << update.size() << "," << endl;
debug_output << "\"learning_rate_R\":" << learning_rate_R << "," << endl;
debug_output << "\"learning_rate_RB\":" << learning_rate_R << "," << endl;
debug_output << "\"learning_rate_Shape\":" << learning_rate_R << "," << endl;