diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/Makefile.am | 30 | ||||
| -rw-r--r-- | training/candidate_set.cc | 169 | ||||
| -rw-r--r-- | training/candidate_set.h | 53 | ||||
| -rw-r--r-- | training/kbest_repository.cc | 37 | ||||
| -rw-r--r-- | training/kbest_repository.h | 19 | 
5 files changed, 240 insertions, 68 deletions
| diff --git a/training/Makefile.am b/training/Makefile.am index 991ac210..8124b107 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -23,11 +23,17 @@ noinst_PROGRAMS = \  TESTS = lbfgs_test optimize_test -mpi_online_optimize_SOURCES = mpi_online_optimize.cc online_optimizer.cc -mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz +noinst_LIBRARIES = libtraining.a +libtraining_a_SOURCES = \ +  candidate_set.cc \ +  optimize.cc \ +  online_optimizer.cc -mpi_flex_optimize_SOURCES = mpi_flex_optimize.cc online_optimizer.cc optimize.cc -mpi_flex_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz +mpi_online_optimize_SOURCES = mpi_online_optimize.cc +mpi_online_optimize_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz + +mpi_flex_optimize_SOURCES = mpi_flex_optimize.cc +mpi_flex_optimize_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz  mpi_extract_reachable_SOURCES = mpi_extract_reachable.cc  mpi_extract_reachable_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz @@ -35,8 +41,8 @@ mpi_extract_reachable_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mtev  mpi_extract_features_SOURCES = mpi_extract_features.cc  mpi_extract_features_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz -mpi_batch_optimize_SOURCES = mpi_batch_optimize.cc optimize.cc -mpi_batch_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz +mpi_batch_optimize_SOURCES = mpi_batch_optimize.cc +mpi_batch_optimize_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz  mpi_compute_cllh_SOURCES = mpi_compute_cllh.cc  mpi_compute_cllh_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz @@ -50,14 +56,14 @@ test_ngram_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteva  model1_SOURCES = model1.cc ttables.cc  model1_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz -lbl_model_SOURCES = lbl_model.cc optimize.cc -lbl_model_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz +lbl_model_SOURCES = lbl_model.cc +lbl_model_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz  grammar_convert_SOURCES = grammar_convert.cc  grammar_convert_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz -optimize_test_SOURCES = optimize_test.cc optimize.cc online_optimizer.cc -optimize_test_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz +optimize_test_SOURCES = optimize_test.cc +optimize_test_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz  collapse_weights_SOURCES = collapse_weights.cc  collapse_weights_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz @@ -65,8 +71,8 @@ collapse_weights_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/lib  lbfgs_test_SOURCES = lbfgs_test.cc  lbfgs_test_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz -mr_optimize_reduce_SOURCES = mr_optimize_reduce.cc optimize.cc -mr_optimize_reduce_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz +mr_optimize_reduce_SOURCES = mr_optimize_reduce.cc +mr_optimize_reduce_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz  mr_em_map_adapter_SOURCES = mr_em_map_adapter.cc  mr_em_map_adapter_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz diff --git a/training/candidate_set.cc b/training/candidate_set.cc new file mode 100644 index 00000000..5ab4558a --- /dev/null +++ b/training/candidate_set.cc @@ -0,0 +1,169 @@ +#include "candidate_set.h" + +#include <tr1/unordered_set> + +#include <boost/functional/hash.hpp> + +#include "ns.h" +#include "filelib.h" +#include "wordid.h" +#include "tdict.h" +#include "hg.h" +#include "kbest.h" +#include "viterbi.h" + +using namespace std; + +namespace training { + +struct ApproxVectorHasher { +  static const size_t MASK = 0xFFFFFFFFull; +  union UType { +    double f;   // leave as double +    size_t i; +  }; +  static inline double round(const double x) { +    UType t; +    t.f = x; +    size_t r = t.i & MASK; +    if ((r << 1) > MASK) +      t.i += MASK - r + 1; +    else +      t.i &= (1ull - MASK); +    return t.f; +  } +  size_t operator()(const SparseVector<double>& x) const { +    size_t h = 0x573915839; +    for (SparseVector<double>::const_iterator it = x.begin(); it != x.end(); ++it) { +      UType t; +      t.f = it->second; +      if (t.f) { +        size_t z = (t.i >> 32); +        boost::hash_combine(h, it->first); +        boost::hash_combine(h, z); +      } +    } +    return h; +  } +}; + +struct ApproxVectorEquals { +  bool operator()(const SparseVector<double>& a, const SparseVector<double>& b) const { +    SparseVector<double>::const_iterator bit = b.begin(); +    for (SparseVector<double>::const_iterator ait = a.begin(); ait != a.end(); ++ait) { +      if (bit == b.end() || +          ait->first != bit->first || +          ApproxVectorHasher::round(ait->second) != ApproxVectorHasher::round(bit->second)) +        return false; +      ++bit; +    } +    if (bit != b.end()) return false; +    return true; +  } +}; + +double Candidate::g(const SegmentEvaluator& scorer, const EvaluationMetric* metric) const { +  if (g_ == -100.0f) { +    SufficientStats ss; +    scorer.Evaluate(ewords, &ss); +    g_ = metric->ComputeScore(ss); +  } +  return g_; +} + +struct CandidateCompare { +  bool operator()(const Candidate& a, const Candidate& b) const { +    ApproxVectorEquals eq; +    return (a.ewords == b.ewords && eq(a.fmap,b.fmap)); +  } +}; + +struct CandidateHasher { +  size_t operator()(const Candidate& x) const { +    boost::hash<vector<WordID> > hhasher; +    ApproxVectorHasher vhasher; +    size_t ha = hhasher(x.ewords); +    boost::hash_combine(ha, vhasher(x.fmap)); +    return ha; +  } +}; + +void CandidateSet::WriteToFile(const string& file) const { +  WriteFile wf(file); +  ostream& out = *wf.stream(); +  out.precision(10); +  for (unsigned i = 0; i < cs.size(); ++i) { +    out << TD::GetString(cs[i].ewords) << endl; +    out << cs[i].fmap << endl; +  } +} + +static void ParseSparseVector(string& line, size_t cur, SparseVector<double>* out) { +  SparseVector<double>& x = *out; +  size_t last_start = cur; +  size_t last_comma = string::npos; +  while(cur <= line.size()) { +    if (line[cur] == ' ' || cur == line.size()) { +      if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) { +        cerr << "[ERROR] " << line << endl << "  position = " << cur << endl; +        exit(1); +      } +      const int fid = FD::Convert(line.substr(last_start, last_comma - last_start)); +      if (cur < line.size()) line[cur] = 0; +      const double val = strtod(&line[last_comma + 1], NULL); +      x.set_value(fid, val); + +      last_comma = string::npos; +      last_start = cur+1; +    } else { +      if (line[cur] == '=') +        last_comma = cur; +    } +    ++cur; +  } +} + +void CandidateSet::ReadFromFile(const string& file) { +  cerr << "Reading candidates from " << file << endl; +  ReadFile rf(file); +  istream& in = *rf.stream(); +  string cand; +  string feats; +  while(getline(in, cand)) { +    getline(in, feats); +    assert(in); +    cs.push_back(Candidate()); +    TD::ConvertSentence(cand, &cs.back().ewords); +    ParseSparseVector(feats, 0, &cs.back().fmap); +  } +  cerr << "  read " << cs.size() << " candidates\n"; +} + +void CandidateSet::Dedup() { +  cerr << "Dedup in=" << cs.size(); +  tr1::unordered_set<Candidate, CandidateHasher, CandidateCompare> u; +  while(cs.size() > 0) { +    u.insert(cs.back()); +    cs.pop_back(); +  } +  tr1::unordered_set<Candidate, CandidateHasher, CandidateCompare>::iterator it = u.begin(); +  while (it != u.end()) { +    cs.push_back(*it); +    it = u.erase(it); +  } +  cerr << "  out=" << cs.size() << endl; +} + +void CandidateSet::AddKBestCandidates(const Hypergraph& hg, size_t kbest_size) { +  KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size); + +  for (unsigned i = 0; i < kbest_size; ++i) { +    const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = +      kbest.LazyKthBest(hg.nodes_.size() - 1, i); +    if (!d) break; +    cs.push_back(Candidate(d->yield, d->feature_values)); +  } +  Dedup(); +} + +} diff --git a/training/candidate_set.h b/training/candidate_set.h new file mode 100644 index 00000000..e2b0b1ba --- /dev/null +++ b/training/candidate_set.h @@ -0,0 +1,53 @@ +#ifndef _CANDIDATE_SET_H_ +#define _CANDIDATE_SET_H_ + +#include <vector> +#include <algorithm> + +#include "wordid.h" +#include "sparse_vector.h" + +class Hypergraph; +struct SegmentEvaluator; +struct EvaluationMetric; + +namespace training { + +struct Candidate { +  Candidate() : g_(-100.0f) {} +  Candidate(const std::vector<WordID>& e, const SparseVector<double>& fm) : ewords(e), fmap(fm), g_(-100.0f) {} +  std::vector<WordID> ewords; +  SparseVector<double> fmap; +  double g(const SegmentEvaluator& scorer, const EvaluationMetric* metric) const; +  void swap(Candidate& other) { +    std::swap(g_, other.g_); +    ewords.swap(other.ewords); +    fmap.swap(other.fmap); +  } + private: +  mutable float g_; +  //SufficientStats score_stats; +}; + +// represents some kind of collection of translation candidates, e.g. +// aggregated k-best lists, sample lists, etc. +class CandidateSet { + public: +  CandidateSet() {} +  inline size_t size() const { return cs.size(); } +  const Candidate& operator[](size_t i) const { return cs[i]; } + +  void ReadFromFile(const std::string& file); +  void WriteToFile(const std::string& file) const; +  void AddKBestCandidates(const Hypergraph& hg, size_t kbest_size); +  // TODO add code to do unique k-best +  // TODO add code to draw k samples + + private: +  void Dedup(); +  std::vector<Candidate> cs; +}; + +} + +#endif diff --git a/training/kbest_repository.cc b/training/kbest_repository.cc deleted file mode 100644 index 145b40a2..00000000 --- a/training/kbest_repository.cc +++ /dev/null @@ -1,37 +0,0 @@ -#include "kbest_repository.h" - -#include <boost/functional/hash.hpp> - -using namespace std; - -struct ApproxVectorHasher { -  static const size_t MASK = 0xFFFFFFFFull; -  union UType { -    double f;   // leave as double -    size_t i; -  }; -  static inline double round(const double x) { -    UType t; -    t.f = x; -    size_t r = t.i & MASK; -    if ((r << 1) > MASK) -      t.i += MASK - r + 1; -    else -      t.i &= (1ull - MASK); -    return t.f; -  } -  size_t operator()(const SparseVector<double>& x) const { -    size_t h = 0x573915839; -    for (SparseVector<double>::const_iterator it = x.begin(); it != x.end(); ++it) { -      UType t; -      t.f = it->second; -      if (t.f) { -        size_t z = (t.i >> 32); -        boost::hash_combine(h, it->first); -        boost::hash_combine(h, z); -      } -    } -    return h; -  } -}; - diff --git a/training/kbest_repository.h b/training/kbest_repository.h deleted file mode 100644 index 0345394a..00000000 --- a/training/kbest_repository.h +++ /dev/null @@ -1,19 +0,0 @@ -#ifndef _KBEST_REPOSITORY_H_ -#define _KBEST_REPOSITORY_H_ - -#include <vector> -#include "wordid.h" -#include "ns.h" -#include "sparse_vector.h" - -class KBestRepository { -  struct HypInfo { -    std::vector<WordID> words; -    SparseVector<double> x; -    SufficientStats score_stats; -  }; - -  std::vector<HypInfo> candidates; -}; - -#endif | 
