diff options
Diffstat (limited to 'training')
19 files changed, 1057 insertions, 22 deletions
diff --git a/training/Makefile.am b/training/Makefile.am index 8ef3c939..2812a9be 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -8,5 +8,5 @@ SUBDIRS = \ dtrain \ latent_svm \ mira \ - rampion - + rampion \ + const_reorder diff --git a/training/const_reorder/Makefile.am b/training/const_reorder/Makefile.am new file mode 100644 index 00000000..2c681398 --- /dev/null +++ b/training/const_reorder/Makefile.am @@ -0,0 +1,8 @@ +bin_PROGRAMS = const_reorder_model_trainer argument_reorder_model_trainer + +AM_CPPFLAGS = -I$(top_srcdir) -I$(top_srcdir)/utils -I$(top_srcdir)/decoder + +const_reorder_model_trainer_SOURCES = constituent_reorder_model.cc trainer.h trainer.cc +const_reorder_model_trainer_LDADD = ../../utils/libutils.a +argument_reorder_model_trainer_SOURCES = argument_reorder_model.cc trainer.h trainer.cc +argument_reorder_model_trainer_LDADD = ../../utils/libutils.a diff --git a/training/const_reorder/argument_reorder_model.cc b/training/const_reorder/argument_reorder_model.cc new file mode 100644 index 00000000..87f2ce2f --- /dev/null +++ b/training/const_reorder/argument_reorder_model.cc @@ -0,0 +1,307 @@ +/* + * argument_reorder_model.cc + * + * Created on: Dec 15, 2013 + * Author: lijunhui + */ + +#include <boost/program_options.hpp> +#include <iostream> +#include <fstream> +#include <sstream> +#include <string> +#include <vector> + +#include "utils/filelib.h" + +#include "trainer.h" + +using namespace std; +using namespace const_reorder; + +inline void fnPreparingTrainingdata(const char* pszFName, int iCutoff, + const char* pszNewFName) { + Map hashPredicate; + { + ReadFile in(pszFName); + string line; + while (getline(*in.stream(), line)) { + if (!line.size()) continue; + vector<string> terms; + SplitOnWhitespace(line, &terms); + for (const auto& i : terms) { + ++hashPredicate[i]; + } + } + } + + { + ReadFile in(pszFName); + WriteFile out(pszNewFName); + string line; + while (getline(*in.stream(), line)) { + if (!line.size()) continue; + vector<string> terms; + SplitOnWhitespace(line, &terms); + bool written = false; + for (const auto& i : terms) { + if (hashPredicate[i] >= iCutoff) { + (*out.stream()) << i << " "; + written = true; + } + } + if (written) { + (*out.stream()) << "\n"; + } + } + } +} + +struct SArgumentReorderTrainer { + SArgumentReorderTrainer( + const char* pszSRLFname, // source-side srl tree file name + const char* pszAlignFname, // alignment filename + const char* pszSourceFname, // source file name + const char* pszTargetFname, // target file name + const char* pszTopPredicateFname, // target file name + const char* pszInstanceFname, // training instance file name + const char* pszModelFname, // classifier model file name + int iCutoff) { + fnGenerateInstanceFiles(pszSRLFname, pszAlignFname, pszSourceFname, + pszTargetFname, pszTopPredicateFname, + pszInstanceFname); + + string strInstanceFname, strModelFname; + strInstanceFname = string(pszInstanceFname) + string(".left"); + strModelFname = string(pszModelFname) + string(".left"); + fnTraining(strInstanceFname.c_str(), strModelFname.c_str(), iCutoff); + strInstanceFname = string(pszInstanceFname) + string(".right"); + strModelFname = string(pszModelFname) + string(".right"); + fnTraining(strInstanceFname.c_str(), strModelFname.c_str(), iCutoff); + } + + ~SArgumentReorderTrainer() {} + + private: + void fnTraining(const char* pszInstanceFname, const char* pszModelFname, + int iCutoff) { + char* pszNewInstanceFName = new char[strlen(pszInstanceFname) + 50]; + if (iCutoff > 0) { + sprintf(pszNewInstanceFName, "%s.tmp", pszInstanceFname); + fnPreparingTrainingdata(pszInstanceFname, iCutoff, pszNewInstanceFName); + } else { + strcpy(pszNewInstanceFName, pszInstanceFname); + } + + Tsuruoka_Maxent_Trainer* pMaxent = new Tsuruoka_Maxent_Trainer; + pMaxent->fnTrain(pszNewInstanceFName, "l1", pszModelFname); + delete pMaxent; + + if (strcmp(pszNewInstanceFName, pszInstanceFname) != 0) { + sprintf(pszNewInstanceFName, "rm %s.tmp", pszInstanceFname); + system(pszNewInstanceFName); + } + delete[] pszNewInstanceFName; + } + + void fnGenerateInstanceFiles( + const char* pszSRLFname, // source-side flattened parse tree file name + const char* pszAlignFname, // alignment filename + const char* pszSourceFname, // source file name + const char* pszTargetFname, // target file name + const char* pszTopPredicateFname, // top predicate file name (we only + // consider predicates with 100+ + // occurrences + const char* pszInstanceFname // training instance file name + ) { + SAlignmentReader* pAlignReader = new SAlignmentReader(pszAlignFname); + SSrlSentenceReader* pSRLReader = new SSrlSentenceReader(pszSRLFname); + ReadFile source_file(pszSourceFname); + ReadFile target_file(pszTargetFname); + + Map* pMapPredicate; + if (pszTopPredicateFname != NULL) + pMapPredicate = fnLoadTopPredicates(pszTopPredicateFname); + else + pMapPredicate = NULL; + + string line; + + WriteFile left_file(pszInstanceFname + string(".left")); + WriteFile right_file(pszInstanceFname + string(".right")); + + // read sentence by sentence + SAlignment* pAlign; + SSrlSentence* pSRL; + SParsedTree* pTree; + int iSentNum = 0; + while ((pAlign = pAlignReader->fnReadNextAlignment()) != NULL) { + pSRL = pSRLReader->fnReadNextSrlSentence(); + assert(pSRL != NULL); + pTree = pSRL->m_pTree; + assert(getline(*source_file.stream(), line)); + vector<string> vecSTerms; + SplitOnWhitespace(line, &vecSTerms); + assert(getline(*target_file.stream(), line)); + vector<string> vecTTerms; + SplitOnWhitespace(line, &vecTTerms); + // vecTPOSTerms.size() == 0, given the case when an english sentence fails + // parsing + + if (pTree != NULL) { + for (size_t i = 0; i < pSRL->m_vecPred.size(); i++) { + SPredicate* pPred = pSRL->m_vecPred[i]; + if (strcmp(pTree->m_vecTerminals[pPred->m_iPosition] + ->m_ptParent->m_pszTerm, + "VA") == 0) + continue; + string strPred = + string(pTree->m_vecTerminals[pPred->m_iPosition]->m_pszTerm); + if (pMapPredicate != NULL) { + Map::iterator iter_map = pMapPredicate->find(strPred); + if (pMapPredicate != NULL && iter_map == pMapPredicate->end()) + continue; + } + + SPredicateItem* pPredItem = new SPredicateItem(pTree, pPred); + + vector<string> vecStrBlock; + for (size_t j = 0; j < pPredItem->vec_items_.size(); j++) { + SSRLItem* pItem1 = pPredItem->vec_items_[j]; + vecStrBlock.push_back(SArgumentReorderModel::fnGetBlockOutcome( + pItem1->tree_item_->m_iBegin, pItem1->tree_item_->m_iEnd, + pAlign)); + } + + vector<string> vecStrLeftReorderType; + vector<string> vecStrRightReorderType; + SArgumentReorderModel::fnGetReorderType( + pPredItem, pAlign, vecStrLeftReorderType, vecStrRightReorderType); + for (int j = 1; j < pPredItem->vec_items_.size(); j++) { + string strLeftOutcome, strRightOutcome; + strLeftOutcome = vecStrLeftReorderType[j - 1]; + strRightOutcome = vecStrRightReorderType[j - 1]; + ostringstream ostr; + SArgumentReorderModel::fnGenerateFeature(pTree, pPred, pPredItem, j, + vecStrBlock[j - 1], + vecStrBlock[j], ostr); + + // fprintf(stderr, "%s %s\n", ostr.str().c_str(), + // strOutcome.c_str()); + // fprintf(fpOut, "sentid=%d %s %s\n", iSentNum, ostr.str().c_str(), + // strOutcome.c_str()); + (*left_file.stream()) << ostr.str() << " " << strLeftOutcome + << "\n"; + (*right_file.stream()) << ostr.str() << " " << strRightOutcome + << "\n"; + } + } + } + delete pSRL; + + delete pAlign; + iSentNum++; + + if (iSentNum % 100000 == 0) fprintf(stderr, "#%d\n", iSentNum); + } + + delete pAlignReader; + delete pSRLReader; + } + + Map* fnLoadTopPredicates(const char* pszTopPredicateFname) { + if (pszTopPredicateFname == NULL) return NULL; + + Map* pMapPredicate = new Map(); + // STxtFileReader* pReader = new STxtFileReader(pszTopPredicateFname); + ReadFile in(pszTopPredicateFname); + // char* pszLine = new char[50001]; + string line; + int iNumCount = 0; + while (getline(*in.stream(), line)) { + if (line.size() && line[0] == '#') continue; + auto p = line.find(' '); + assert(p != string::npos); + int iCount = atoi(line.substr(p + 1).c_str()); + if (iCount < 100) break; + (*pMapPredicate)[line] = iNumCount++; + } + return pMapPredicate; + } +}; + +namespace po = boost::program_options; + +inline void print_options(std::ostream& out, + po::options_description const& opts) { + typedef std::vector<boost::shared_ptr<po::option_description> > Ds; + Ds const& ds = opts.options(); + out << '"'; + for (unsigned i = 0; i < ds.size(); ++i) { + if (i) out << ' '; + out << "--" << ds[i]->long_name(); + } + out << '\n'; +} +inline string str(char const* name, po::variables_map const& conf) { + return conf[name].as<string>(); +} + +//--srl_file /scratch0/mt_exp/gale-align/gale-align.nw.srl.cn --align_file +/// scratch0/mt_exp/gale-align/gale-align.nw.al --source_file +/// scratch0/mt_exp/gale-align/gale-align.nw.cn --target_file +/// scratch0/mt_exp/gale-align/gale-align.nw.en --instance_file +/// scratch0/mt_exp/gale-align/gale-align.nw.argreorder.instance --model_prefix +/// scratch0/mt_exp/gale-align/gale-align.nw.argreorder.model --feature_cutoff 2 +//--srl_file /scratch0/mt_exp/gale-ctb/gale-ctb.srl.cn --align_file +/// scratch0/mt_exp/gale-ctb/gale-ctb.align --source_file +/// scratch0/mt_exp/gale-ctb/gale-ctb.cn --target_file +/// scratch0/mt_exp/gale-ctb/gale-ctb.en0 --instance_file +/// scratch0/mt_exp/gale-ctb/gale-ctb.argreorder.instance --model_prefix +/// scratch0/mt_exp/gale-ctb/gale-ctb.argreorder.model --feature_cutoff 2 +int main(int argc, char** argv) { + + po::options_description opts("Configuration options"); + opts.add_options()("srl_file", po::value<string>(), "srl file path (input)")( + "align_file", po::value<string>(), "Alignment file path (input)")( + "source_file", po::value<string>(), "Source text file path (input)")( + "target_file", po::value<string>(), "Target text file path (input)")( + "instance_file", po::value<string>(), "Instance file path (output)")( + "model_prefix", po::value<string>(), + "Model file path prefix (output): three files will be generated")( + "feature_cutoff", po::value<int>()->default_value(100), + "Feature cutoff threshold")("help", "produce help message"); + + po::variables_map vm; + if (argc) { + po::store(po::parse_command_line(argc, argv, opts), vm); + po::notify(vm); + } + + if (vm.count("help")) { + print_options(cout, opts); + return 1; + } + + if (!vm.count("srl_file") || !vm.count("align_file") || + !vm.count("source_file") || !vm.count("target_file") || + !vm.count("instance_file") || !vm.count("model_prefix")) { + print_options(cout, opts); + if (!vm.count("parse_file")) cout << "--parse_file NOT FOUND\n"; + if (!vm.count("align_file")) cout << "--align_file NOT FOUND\n"; + if (!vm.count("source_file")) cout << "--source_file NOT FOUND\n"; + if (!vm.count("target_file")) cout << "--target_file NOT FOUND\n"; + if (!vm.count("instance_file")) cout << "--instance_file NOT FOUND\n"; + if (!vm.count("model_prefix")) cout << "--model_prefix NOT FOUND\n"; + exit(0); + } + + SArgumentReorderTrainer* pTrainer = new SArgumentReorderTrainer( + str("srl_file", vm).c_str(), str("align_file", vm).c_str(), + str("source_file", vm).c_str(), str("target_file", vm).c_str(), NULL, + str("instance_file", vm).c_str(), str("model_prefix", vm).c_str(), + vm["feature_cutoff"].as<int>()); + delete pTrainer; + + return 1; +} diff --git a/training/const_reorder/constituent_reorder_model.cc b/training/const_reorder/constituent_reorder_model.cc new file mode 100644 index 00000000..d3ad0f2b --- /dev/null +++ b/training/const_reorder/constituent_reorder_model.cc @@ -0,0 +1,636 @@ +/* + * constituent_reorder_model.cc + * + * Created on: Jul 10, 2013 + * Author: junhuili + */ + +#include <string> +#include <unordered_map> + +#include <boost/program_options.hpp> + +#include "utils/filelib.h" + +#include "trainer.h" + +using namespace std; +using namespace const_reorder; + +typedef std::unordered_map<std::string, int> Map; +typedef std::unordered_map<std::string, int>::iterator Iterator; + +namespace po = boost::program_options; + +inline void fnPreparingTrainingdata(const char* pszFName, int iCutoff, + const char* pszNewFName) { + Map hashPredicate; + { + ReadFile f(pszFName); + string line; + while (getline(*f.stream(), line)) { + if (!line.size()) continue; + vector<string> terms; + SplitOnWhitespace(line, &terms); + for (const auto& i : terms) { + ++hashPredicate[i]; + } + } + } + + { + ReadFile in(pszFName); + WriteFile out(pszNewFName); + string line; + while (getline(*in.stream(), line)) { + if (!line.size()) continue; + vector<string> terms; + SplitOnWhitespace(line, &terms); + bool written = false; + for (const auto& i : terms) { + if (hashPredicate[i] >= iCutoff) { + (*out.stream()) << i << " "; + written = true; + } + } + if (written) { + (*out.stream()) << "\n"; + } + } + } +} + +struct SConstReorderTrainer { + SConstReorderTrainer( + const char* pszSynFname, // source-side flattened parse tree file name + const char* pszAlignFname, // alignment filename + const char* pszSourceFname, // source file name + const char* pszTargetFname, // target file name + const char* pszInstanceFname, // training instance file name + const char* pszModelPrefix, // classifier model file name prefix + int iCutoff, // feature count threshold + const char* /*pszOption*/ // other classifier parameters (for svmlight) + ) { + fnGenerateInstanceFile(pszSynFname, pszAlignFname, pszSourceFname, + pszTargetFname, pszInstanceFname); + + string strInstanceLeftFname = string(pszInstanceFname) + string(".left"); + string strInstanceRightFname = string(pszInstanceFname) + string(".right"); + + string strModelLeftFname = string(pszModelPrefix) + string(".left"); + string strModelRightFname = string(pszModelPrefix) + string(".right"); + + fprintf(stdout, "...Training the left ordering model\n"); + fnTraining(strInstanceLeftFname.c_str(), strModelLeftFname.c_str(), + iCutoff); + fprintf(stdout, "...Training the right ordering model\n"); + fnTraining(strInstanceRightFname.c_str(), strModelRightFname.c_str(), + iCutoff); + } + ~SConstReorderTrainer() {} + + private: + void fnTraining(const char* pszInstanceFname, const char* pszModelFname, + int iCutoff) { + char* pszNewInstanceFName = new char[strlen(pszInstanceFname) + 50]; + if (iCutoff > 0) { + sprintf(pszNewInstanceFName, "%s.tmp", pszInstanceFname); + fnPreparingTrainingdata(pszInstanceFname, iCutoff, pszNewInstanceFName); + } else { + strcpy(pszNewInstanceFName, pszInstanceFname); + } + + /*Zhangle_Maxent *pZhangleMaxent = new Zhangle_Maxent(NULL); +pZhangleMaxent->fnTrain(pszInstanceFname, "lbfgs", pszModelFname, 100, 2.0); +delete pZhangleMaxent;*/ + + Tsuruoka_Maxent_Trainer* pMaxent = new Tsuruoka_Maxent_Trainer; + pMaxent->fnTrain(pszNewInstanceFName, "l1", pszModelFname); + delete pMaxent; + + if (strcmp(pszNewInstanceFName, pszInstanceFname) != 0) { + sprintf(pszNewInstanceFName, "rm %s.tmp", pszInstanceFname); + system(pszNewInstanceFName); + } + delete[] pszNewInstanceFName; + } + + inline bool fnIsVerbPOS(const char* pszTerm) { + if (strcmp(pszTerm, "VV") == 0 || strcmp(pszTerm, "VA") == 0 || + strcmp(pszTerm, "VC") == 0 || strcmp(pszTerm, "VE") == 0) + return true; + return false; + } + + inline void fnGetOutcome(int iL1, int iR1, int iL2, int iR2, + const SAlignment* /*pAlign*/, string& strOutcome) { + if (iL1 == -1 && iL2 == -1) + strOutcome = "BU"; // 1. both are untranslated + else if (iL1 == -1) + strOutcome = "1U"; // 2. XP1 is untranslated + else if (iL2 == -1) + strOutcome = "2U"; // 3. XP2 is untranslated + else if (iL1 == iL2 && iR1 == iR2) + strOutcome = "SS"; // 4. Have same scope + else if (iL1 <= iL2 && iR1 >= iR2) + strOutcome = "1C2"; // 5. XP1's translation covers XP2's + else if (iL1 >= iL2 && iR1 <= iR2) + strOutcome = "2C1"; // 6. XP2's translation covers XP1's + else if (iR1 < iL2) { + int i = iR1 + 1; + /*while (i < iL2) { + if (pAlign->fnIsAligned(i, false)) + break; + i++; + }*/ + if (i == iL2) + strOutcome = "M"; // 7. Monotone + else + strOutcome = "DM"; // 8. Discontinuous monotone + } else if (iL1 < iL2 && iL2 <= iR1 && iR1 < iR2) + strOutcome = "OM"; // 9. Overlap monotone + else if (iR2 < iL1) { + int i = iR2 + 1; + /*while (i < iL1) { + if (pAlign->fnIsAligned(i, false)) + break; + i++; + }*/ + if (i == iL1) + strOutcome = "S"; // 10. Swap + else + strOutcome = "DS"; // 11. Discontinuous swap + } else if (iL2 < iL1 && iL1 <= iR2 && iR2 < iR1) + strOutcome = "OS"; // 12. Overlap swap + else + assert(false); + } + + inline void fnGetOutcome(int i1, int i2, string& strOutcome) { + assert(i1 != i2); + if (i1 < i2) { + if (i2 > i1 + 1) + strOutcome = string("DM"); + else + strOutcome = string("M"); + } else { + if (i1 > i2 + 1) + strOutcome = string("DS"); + else + strOutcome = string("S"); + } + } + + inline void fnGetRelativePosition(const vector<int>& vecLeft, + vector<int>& vecPosition) { + vecPosition.clear(); + + vector<float> vec; + for (size_t i = 0; i < vecLeft.size(); i++) { + if (vecLeft[i] == -1) { + if (i == 0) + vec.push_back(-1); + else + vec.push_back(vecLeft[i - 1] + 0.1); + } else + vec.push_back(vecLeft[i]); + } + + for (size_t i = 0; i < vecLeft.size(); i++) { + int count = 0; + + for (size_t j = 0; j < vecLeft.size(); j++) { + if (j == i) continue; + if (vec[j] < vec[i]) { + count++; + } else if (vec[j] == vec[i] && j < i) { + count++; + } + } + vecPosition.push_back(count); + } + } + + /* + * features: + * f1: (left_label, right_label, parent_label) + * f2: (left_label, right_label, parent_label, other_right_sibling_label) + * f3: (left_label, right_label, parent_label, other_left_sibling_label) + * f4: (left_label, right_label, left_head_pos) + * f5: (left_label, right_label, left_head_word) + * f6: (left_label, right_label, right_head_pos) + * f7: (left_label, right_label, right_head_word) + * f8: (left_label, right_label, left_chunk_status) + * f9: (left_label, right_label, right_chunk_status) + * f10: (left_label, parent_label) + * f11: (right_label, parent_label) + */ + void fnGenerateInstance(const SParsedTree* pTree, const STreeItem* pParent, + int iPos, const vector<string>& vecChunkStatus, + const vector<int>& vecPosition, + const vector<string>& vecSTerms, + const vector<string>& /*vecTTerms*/, string& strOutcome, + ostringstream& ostr) { + STreeItem* pCon1, *pCon2; + pCon1 = pParent->m_vecChildren[iPos - 1]; + pCon2 = pParent->m_vecChildren[iPos]; + + fnGetOutcome(vecPosition[iPos - 1], vecPosition[iPos], strOutcome); + + string left_label = string(pCon1->m_pszTerm); + string right_label = string(pCon2->m_pszTerm); + string parent_label = string(pParent->m_pszTerm); + + vector<string> vec_other_right_sibling; + for (int i = iPos + 1; i < pParent->m_vecChildren.size(); i++) + vec_other_right_sibling.push_back( + string(pParent->m_vecChildren[i]->m_pszTerm)); + if (vec_other_right_sibling.size() == 0) + vec_other_right_sibling.push_back(string("NULL")); + vector<string> vec_other_left_sibling; + for (int i = 0; i < iPos - 1; i++) + vec_other_left_sibling.push_back( + string(pParent->m_vecChildren[i]->m_pszTerm)); + if (vec_other_left_sibling.size() == 0) + vec_other_left_sibling.push_back(string("NULL")); + + // generate features + // f1 + ostr << "f1=" << left_label << "_" << right_label << "_" << parent_label; + // f2 + for (int i = 0; i < vec_other_right_sibling.size(); i++) + ostr << " f2=" << left_label << "_" << right_label << "_" << parent_label + << "_" << vec_other_right_sibling[i]; + // f3 + for (int i = 0; i < vec_other_left_sibling.size(); i++) + ostr << " f3=" << left_label << "_" << right_label << "_" << parent_label + << "_" << vec_other_left_sibling[i]; + // f4 + ostr << " f4=" << left_label << "_" << right_label << "_" + << pTree->m_vecTerminals[pCon1->m_iHeadWord]->m_ptParent->m_pszTerm; + // f5 + ostr << " f5=" << left_label << "_" << right_label << "_" + << vecSTerms[pCon1->m_iHeadWord]; + // f6 + ostr << " f6=" << left_label << "_" << right_label << "_" + << pTree->m_vecTerminals[pCon2->m_iHeadWord]->m_ptParent->m_pszTerm; + // f7 + ostr << " f7=" << left_label << "_" << right_label << "_" + << vecSTerms[pCon2->m_iHeadWord]; + // f8 + ostr << " f8=" << left_label << "_" << right_label << "_" + << vecChunkStatus[iPos - 1]; + // f9 + ostr << " f9=" << left_label << "_" << right_label << "_" + << vecChunkStatus[iPos]; + // f10 + ostr << " f10=" << left_label << "_" << parent_label; + // f11 + ostr << " f11=" << right_label << "_" << parent_label; + } + + /* + * Source side (11 features): + * f1: the categories of XP1 and XP2 (f1_1, f1_2) + * f2: the head words of XP1 and XP2 (f2_1, f2_2) + * f3: the first and last word of XP1 (f3_f, f3_l) + * f4: the first and last word of XP2 (f4_f, f4_l) + * f5: is XP1 or XP2 the head node (f5_1, f5_2) + * f6: the category of the common parent + * Target side (6 features): + * f7: the first and the last word of XP1's translation (f7_f, f7_l) + * f8: the first and the last word of XP2's translation (f8_f, f8_l) + * f9: the translation of XP1's and XP2's head word (f9_1, f9_2) + */ + void fnGenerateInstance(const SParsedTree* /*pTree*/, const STreeItem* pParent, + const STreeItem* pCon1, const STreeItem* pCon2, + const SAlignment* pAlign, + const vector<string>& vecSTerms, + const vector<string>& /*vecTTerms*/, string& strOutcome, + ostringstream& ostr) { + + int iLeft1, iRight1, iLeft2, iRight2; + pAlign->fnGetLeftRightMost(pCon1->m_iBegin, pCon1->m_iEnd, true, iLeft1, + iRight1); + pAlign->fnGetLeftRightMost(pCon2->m_iBegin, pCon2->m_iEnd, true, iLeft2, + iRight2); + + fnGetOutcome(iLeft1, iRight1, iLeft2, iRight2, pAlign, strOutcome); + + // generate features + // f1 + ostr << "f1_1=" << pCon1->m_pszTerm << " f1_2=" << pCon2->m_pszTerm; + // f2 + ostr << " f2_1=" << vecSTerms[pCon1->m_iHeadWord] << " f2_2" + << vecSTerms[pCon2->m_iHeadWord]; + // f3 + ostr << " f3_f=" << vecSTerms[pCon1->m_iBegin] + << " f3_l=" << vecSTerms[pCon1->m_iEnd]; + // f4 + ostr << " f4_f=" << vecSTerms[pCon2->m_iBegin] + << " f4_l=" << vecSTerms[pCon2->m_iEnd]; + // f5 + if (pParent->m_iHeadChild == pCon1->m_iBrotherIndex) + ostr << " f5_1=1"; + else + ostr << " f5_1=0"; + if (pParent->m_iHeadChild == pCon2->m_iBrotherIndex) + ostr << " f5_2=1"; + else + ostr << " f5_2=0"; + // f6 + ostr << " f6=" << pParent->m_pszTerm; + + /*//f7 + if (iLeft1 != -1) { + ostr << " f7_f=" << vecTTerms[iLeft1] << " f7_l=" << + vecTTerms[iRight1]; + } + if (iLeft2 != -1) { + ostr << " f8_f=" << vecTTerms[iLeft2] << " f8_l=" << + vecTTerms[iRight2]; + } + + const vector<int>* pvecTarget = + pAlign->fnGetSingleWordAlign(pCon1->m_iHeadWord, true); + string str = ""; + for (size_t i = 0; pvecTarget != NULL && i < pvecTarget->size(); i++) { + str += vecTTerms[(*pvecTarget)[i]] + "_"; + } + if (str.length() > 0) { + ostr << " f9_1=" << str.substr(0, str.size()-1); + } + pvecTarget = pAlign->fnGetSingleWordAlign(pCon2->m_iHeadWord, true); + str = ""; + for (size_t i = 0; pvecTarget != NULL && i < pvecTarget->size(); i++) { + str += vecTTerms[(*pvecTarget)[i]] + "_"; + } + if (str.length() > 0) { + ostr << " f9_2=" << str.substr(0, str.size()-1); + } */ + } + + void fnGetFocusedParentNodes(const SParsedTree* pTree, + vector<STreeItem*>& vecFocused) { + for (size_t i = 0; i < pTree->m_vecTerminals.size(); i++) { + STreeItem* pParent = pTree->m_vecTerminals[i]->m_ptParent; + + while (pParent != NULL) { + // if (pParent->m_vecChildren.size() > 1 && pParent->m_iEnd - + // pParent->m_iBegin > 5) { + if (pParent->m_vecChildren.size() > 1) { + // do constituent reordering for all children of pParent + vecFocused.push_back(pParent); + } + if (pParent->m_iBrotherIndex != 0) break; + pParent = pParent->m_ptParent; + } + } + } + + void fnGenerateInstanceFile( + const char* pszSynFname, // source-side flattened parse tree file name + const char* pszAlignFname, // alignment filename + const char* pszSourceFname, // source file name + const char* pszTargetFname, // target file name + const char* pszInstanceFname // training instance file name + ) { + SAlignmentReader* pAlignReader = new SAlignmentReader(pszAlignFname); + SParseReader* pParseReader = new SParseReader(pszSynFname, false); + + ReadFile source_file(pszSourceFname); + ReadFile target_file(pszTargetFname); + string strInstanceLeftFname = string(pszInstanceFname) + string(".left"); + string strInstanceRightFname = string(pszInstanceFname) + string(".right"); + WriteFile left_file(strInstanceLeftFname); + WriteFile right_file(strInstanceRightFname); + + // read sentence by sentence + SAlignment* pAlign; + SParsedTree* pTree; + string line; + int iSentNum = 0; + while ((pAlign = pAlignReader->fnReadNextAlignment()) != NULL) { + pTree = pParseReader->fnReadNextParseTree(); + + assert(getline(*source_file.stream(), line)); + vector<string> vecSTerms; + SplitOnWhitespace(line, &vecSTerms); + + assert(getline(*target_file.stream(), line)); + vector<string> vecTTerms; + SplitOnWhitespace(line, &vecTTerms); + + if (pTree != NULL) { + + vector<STreeItem*> vecFocused; + fnGetFocusedParentNodes(pTree, vecFocused); + + for (size_t i = 0; i < vecFocused.size(); i++) { + + STreeItem* pParent = vecFocused[i]; + + vector<int> vecLeft, vecRight; + for (size_t j = 0; j < pParent->m_vecChildren.size(); j++) { + STreeItem* pCon1 = pParent->m_vecChildren[j]; + int iLeft1, iRight1; + pAlign->fnGetLeftRightMost(pCon1->m_iBegin, pCon1->m_iEnd, true, + iLeft1, iRight1); + vecLeft.push_back(iLeft1); + vecRight.push_back(iRight1); + } + vector<int> vecLeftPosition; + fnGetRelativePosition(vecLeft, vecLeftPosition); + vector<int> vecRightPosition; + fnGetRelativePosition(vecRight, vecRightPosition); + + vector<string> vecChunkStatus; + for (size_t j = 0; j < pParent->m_vecChildren.size(); j++) { + string strOutcome = + pAlign->fnIsContinuous(pParent->m_vecChildren[j]->m_iBegin, + pParent->m_vecChildren[j]->m_iEnd); + vecChunkStatus.push_back(strOutcome); + } + + for (size_t j = 1; j < pParent->m_vecChildren.size(); j++) { + // children[j-1] vs. children[j] reordering + + string strLeftOutcome; + ostringstream ostr; + + fnGenerateInstance(pTree, pParent, j, vecChunkStatus, + vecLeftPosition, vecSTerms, vecTTerms, + strLeftOutcome, ostr); + + string ostr_str = ostr.str(); + + // fprintf(stderr, "%s %s\n", ostr.str().c_str(), + // strLeftOutcome.c_str()); + (*left_file.stream()) << ostr_str << " " << strLeftOutcome << "\n"; + + string strRightOutcome; + fnGetOutcome(vecRightPosition[j - 1], vecRightPosition[j], + strRightOutcome); + (*right_file.stream()) << ostr_str + << " LeftOrder=" << strLeftOutcome << " " + << strRightOutcome << "\n"; + } + } + delete pTree; + } + + delete pAlign; + iSentNum++; + + if (iSentNum % 100000 == 0) fprintf(stderr, "#%d\n", iSentNum); + } + + delete pAlignReader; + delete pParseReader; + } + + void fnGenerateInstanceFile2( + const char* pszSynFname, // source-side flattened parse tree file name + const char* pszAlignFname, // alignment filename + const char* pszSourceFname, // source file name + const char* pszTargetFname, // target file name + const char* pszInstanceFname // training instance file name + ) { + SAlignmentReader* pAlignReader = new SAlignmentReader(pszAlignFname); + SParseReader* pParseReader = new SParseReader(pszSynFname, false); + + ReadFile source_file(pszSourceFname); + ReadFile target_file(pszTargetFname); + + WriteFile output_file(pszInstanceFname); + + // read sentence by sentence + SAlignment* pAlign; + SParsedTree* pTree; + string line; + int iSentNum = 0; + while ((pAlign = pAlignReader->fnReadNextAlignment()) != NULL) { + pTree = pParseReader->fnReadNextParseTree(); + assert(getline(*source_file.stream(), line)); + vector<string> vecSTerms; + SplitOnWhitespace(line, &vecSTerms); + + assert(getline(*target_file.stream(), line)); + vector<string> vecTTerms; + SplitOnWhitespace(line, &vecTTerms); + + if (pTree != NULL) { + + vector<STreeItem*> vecFocused; + fnGetFocusedParentNodes(pTree, vecFocused); + + for (size_t i = 0; + i < vecFocused.size() && pTree->m_vecTerminals.size() > 10; i++) { + + STreeItem* pParent = vecFocused[i]; + + for (size_t j = 1; j < pParent->m_vecChildren.size(); j++) { + // children[j-1] vs. children[j] reordering + + string strOutcome; + ostringstream ostr; + + fnGenerateInstance(pTree, pParent, pParent->m_vecChildren[j - 1], + pParent->m_vecChildren[j], pAlign, vecSTerms, + vecTTerms, strOutcome, ostr); + + // fprintf(stderr, "%s %s\n", ostr.str().c_str(), + // strOutcome.c_str()); + (*output_file.stream()) << ostr.str() << " " << strOutcome << "\n"; + } + } + delete pTree; + } + + delete pAlign; + iSentNum++; + + if (iSentNum % 100000 == 0) fprintf(stderr, "#%d\n", iSentNum); + } + + delete pAlignReader; + delete pParseReader; + } +}; + +inline void print_options(std::ostream& out, + po::options_description const& opts) { + typedef std::vector<boost::shared_ptr<po::option_description> > Ds; + Ds const& ds = opts.options(); + out << '"'; + for (unsigned i = 0; i < ds.size(); ++i) { + if (i) out << ' '; + out << "--" << ds[i]->long_name(); + } + out << '\n'; +} +inline string str(char const* name, po::variables_map const& conf) { + return conf[name].as<string>(); +} + +//--parse_file /scratch0/mt_exp/gq-ctb/data/train.srl.cn --align_file +/// scratch0/mt_exp/gq-ctb/data/aligned.grow-diag-final-and --source_file +/// scratch0/mt_exp/gq-ctb/data/train.cn --target_file +/// scratch0/mt_exp/gq-ctb/data/train.en --instance_file +/// scratch0/mt_exp/gq-ctb/data/srl-instance --model_prefix +/// scratch0/mt_exp/gq-ctb/data/srl-instance --feature_cutoff 10 +int main(int argc, char** argv) { + + po::options_description opts("Configuration options"); + opts.add_options()("parse_file", po::value<string>(), + "parse file path (input)")( + "align_file", po::value<string>(), "Alignment file path (input)")( + "source_file", po::value<string>(), "Source text file path (input)")( + "target_file", po::value<string>(), "Target text file path (input)")( + "instance_file", po::value<string>(), "Instance file path (output)")( + "model_prefix", po::value<string>(), + "Model file path prefix (output): three files will be generated")( + "feature_cutoff", po::value<int>()->default_value(100), + "Feature cutoff threshold")("svm_option", po::value<string>(), + "Parameters for SVMLight classifier")( + "help", "produce help message"); + + po::variables_map vm; + if (argc) { + po::store(po::parse_command_line(argc, argv, opts), vm); + po::notify(vm); + } + + if (vm.count("help")) { + print_options(cout, opts); + return 1; + } + + if (!vm.count("parse_file") || !vm.count("align_file") || + !vm.count("source_file") || !vm.count("target_file") || + !vm.count("instance_file") || !vm.count("model_prefix")) { + print_options(cout, opts); + if (!vm.count("parse_file")) cout << "--parse_file NOT FOUND\n"; + if (!vm.count("align_file")) cout << "--align_file NOT FOUND\n"; + if (!vm.count("source_file")) cout << "--source_file NOT FOUND\n"; + if (!vm.count("target_file")) cout << "--target_file NOT FOUND\n"; + if (!vm.count("instance_file")) cout << "--instance_file NOT FOUND\n"; + if (!vm.count("model_prefix")) cout << "--model_prefix NOT FOUND\n"; + exit(0); + } + + const char* pOption; + if (vm.count("svm_option")) + pOption = str("svm_option", vm).c_str(); + else + pOption = NULL; + + SConstReorderTrainer* pTrainer = new SConstReorderTrainer( + str("parse_file", vm).c_str(), str("align_file", vm).c_str(), + str("source_file", vm).c_str(), str("target_file", vm).c_str(), + str("instance_file", vm).c_str(), str("model_prefix", vm).c_str(), + vm["feature_cutoff"].as<int>(), pOption); + delete pTrainer; + + return 0; +} diff --git a/training/const_reorder/trainer.cc b/training/const_reorder/trainer.cc new file mode 100644 index 00000000..1d388eec --- /dev/null +++ b/training/const_reorder/trainer.cc @@ -0,0 +1,69 @@ +#include "trainer.h" + +#include "utils/maxent.h" + +Tsuruoka_Maxent_Trainer::Tsuruoka_Maxent_Trainer() + : const_reorder::Tsuruoka_Maxent(NULL) {} + +void Tsuruoka_Maxent_Trainer::fnTrain(const char* pszInstanceFName, + const char* pszAlgorithm, + const char* pszModelFName) { + assert(strcmp(pszAlgorithm, "l1") == 0 || strcmp(pszAlgorithm, "l2") == 0 || + strcmp(pszAlgorithm, "sgd") == 0 || strcmp(pszAlgorithm, "SGD") == 0); + FILE* fpIn = fopen(pszInstanceFName, "r"); + + maxent::ME_Model* pModel = new maxent::ME_Model(); + + char* pszLine = new char[100001]; + int iNumInstances = 0; + int iLen; + while (!feof(fpIn)) { + pszLine[0] = '\0'; + fgets(pszLine, 20000, fpIn); + if (strlen(pszLine) == 0) { + continue; + } + + iLen = strlen(pszLine); + while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen - 1] < 33) { + pszLine[iLen - 1] = '\0'; + iLen--; + } + + iNumInstances++; + + maxent::ME_Sample* pmes = new maxent::ME_Sample(); + + char* p = strrchr(pszLine, ' '); + assert(p != NULL); + p[0] = '\0'; + p++; + std::vector<std::string> vecContext; + SplitOnWhitespace(std::string(pszLine), &vecContext); + + pmes->label = std::string(p); + for (size_t i = 0; i < vecContext.size(); i++) + pmes->add_feature(vecContext[i]); + pModel->add_training_sample((*pmes)); + if (iNumInstances % 100000 == 0) + fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances); + delete pmes; + } + fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances); + fclose(fpIn); + + if (strcmp(pszAlgorithm, "l1") == 0) + pModel->use_l1_regularizer(1.0); + else if (strcmp(pszAlgorithm, "l2") == 0) + pModel->use_l2_regularizer(1.0); + else + pModel->use_SGD(); + + pModel->train(); + pModel->save_to_file(pszModelFName); + + delete pModel; + fprintf(stdout, "......Finished Training\n"); + fprintf(stdout, "......Model saved as %s\n", pszModelFName); + delete[] pszLine; +} diff --git a/training/const_reorder/trainer.h b/training/const_reorder/trainer.h new file mode 100644 index 00000000..e574a536 --- /dev/null +++ b/training/const_reorder/trainer.h @@ -0,0 +1,12 @@ +#ifndef TRAINING_CONST_REORDER_TRAINER_H_ +#define TRAINING_CONST_REORDER_TRAINER_H_ + +#include "decoder/ff_const_reorder_common.h" + +struct Tsuruoka_Maxent_Trainer : const_reorder::Tsuruoka_Maxent { + Tsuruoka_Maxent_Trainer(); + void fnTrain(const char* pszInstanceFName, const char* pszAlgorithm, + const char* pszModelFName); +}; + +#endif // TRAINING_CONST_REORDER_TRAINER_H_ diff --git a/training/dpmert/lo_test.cc b/training/dpmert/lo_test.cc index b8776169..69e5aa3f 100644 --- a/training/dpmert/lo_test.cc +++ b/training/dpmert/lo_test.cc @@ -56,10 +56,11 @@ BOOST_AUTO_TEST_CASE(TestConvexHull) { } BOOST_AUTO_TEST_CASE(TestConvexHullInside) { - const string json = "{\"rules\":[1,\"[X] ||| a ||| a\",2,\"[X] ||| A [X] ||| A [1]\",3,\"[X] ||| c ||| c\",4,\"[X] ||| C [X] ||| C [1]\",5,\"[X] ||| [X] B [X] ||| [1] B [2]\",6,\"[X] ||| [X] b [X] ||| [1] b [2]\",7,\"[X] ||| X [X] ||| X [1]\",8,\"[X] ||| Z [X] ||| Z [1]\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":1}],\"node\":{\"in_edges\":[0]},\"edges\":[{\"tail\":[0],\"feats\":[0,-0.8,1,-0.1],\"rule\":2}],\"node\":{\"in_edges\":[1]},\"edges\":[{\"tail\":[],\"feats\":[1,-1],\"rule\":3}],\"node\":{\"in_edges\":[2]},\"edges\":[{\"tail\":[2],\"feats\":[0,-0.2,1,-0.1],\"rule\":4}],\"node\":{\"in_edges\":[3]},\"edges\":[{\"tail\":[1,3],\"feats\":[0,-1.2,1,-0.2],\"rule\":5},{\"tail\":[1,3],\"feats\":[0,-0.5,1,-1.3],\"rule\":6}],\"node\":{\"in_edges\":[4,5]},\"edges\":[{\"tail\":[4],\"feats\":[0,-0.5,1,-0.8],\"rule\":7},{\"tail\":[4],\"feats\":[0,-0.7,1,-0.9],\"rule\":8}],\"node\":{\"in_edges\":[6,7]}}"; + std::string path(boost::unit_test::framework::master_test_suite().argc == 2 ? boost::unit_test::framework::master_test_suite().argv[1] : TEST_DATA); Hypergraph hg; - istringstream instr(json); - HypergraphIO::ReadFromJSON(&instr, &hg); + ReadFile rf(path + "/test-ch-inside.bin.gz"); + assert(rf); + HypergraphIO::ReadFromBinary(rf.stream(), &hg); SparseVector<double> wts; wts.set_value(FD::Convert("f1"), 0.4); wts.set_value(FD::Convert("f2"), 1.0); @@ -121,13 +122,13 @@ BOOST_AUTO_TEST_CASE( TestS1) { std::string path(boost::unit_test::framework::master_test_suite().argc == 2 ? boost::unit_test::framework::master_test_suite().argv[1] : TEST_DATA); Hypergraph hg; - ReadFile rf(path + "/0.json.gz"); - HypergraphIO::ReadFromJSON(rf.stream(), &hg); + ReadFile rf(path + "/0.bin.gz"); + HypergraphIO::ReadFromBinary(rf.stream(), &hg); hg.Reweight(wts); Hypergraph hg2; - ReadFile rf2(path + "/1.json.gz"); - HypergraphIO::ReadFromJSON(rf2.stream(), &hg2); + ReadFile rf2(path + "/1.bin.gz"); + HypergraphIO::ReadFromBinary(rf2.stream(), &hg2); hg2.Reweight(wts); vector<vector<WordID> > refs1(4); @@ -193,10 +194,11 @@ BOOST_AUTO_TEST_CASE( TestS1) { } BOOST_AUTO_TEST_CASE(TestZeroOrigin) { - const string json = "{\"rules\":[1,\"[X7] ||| blA ||| without ||| LHSProb=3.92173 LexE2F=2.90799 LexF2E=1.85003 GenerativeProb=10.5381 RulePenalty=1 XFE=2.77259 XEF=0.441833 LabelledEF=2.63906 LabelledFE=4.96981 LogRuleCount=0.693147\",2,\"[X7] ||| blA ||| except ||| LHSProb=4.92173 LexE2F=3.90799 LexF2E=1.85003 GenerativeProb=11.5381 RulePenalty=1 XFE=2.77259 XEF=1.44183 LabelledEF=2.63906 LabelledFE=4.96981 LogRuleCount=1.69315\",3,\"[S] ||| [X7,1] ||| [1] ||| GlueTop=1\",4,\"[X28] ||| EnwAn ||| title ||| LHSProb=3.96802 LexE2F=2.22462 LexF2E=1.83258 GenerativeProb=10.0863 RulePenalty=1 XFE=0 XEF=1.20397 LabelledEF=1.20397 LabelledFE=-1.98341e-08 LogRuleCount=1.09861\",5,\"[X0] ||| EnwAn ||| funny ||| LHSProb=3.98479 LexE2F=1.79176 LexF2E=3.21888 GenerativeProb=11.1681 RulePenalty=1 XFE=0 XEF=2.30259 LabelledEF=2.30259 LabelledFE=0 LogRuleCount=0 SingletonRule=1\",6,\"[X8] ||| [X7,1] EnwAn ||| entitled [1] ||| LHSProb=3.82533 LexE2F=3.21888 LexF2E=2.52573 GenerativeProb=11.3276 RulePenalty=1 XFE=1.20397 XEF=1.20397 LabelledEF=2.30259 LabelledFE=2.30259 LogRuleCount=0 SingletonRule=1\",7,\"[S] ||| [S,1] [X28,2] ||| [1] [2] ||| Glue=1\",8,\"[S] ||| [S,1] [X0,2] ||| [1] [2] ||| Glue=1\",9,\"[S] ||| [X8,1] ||| [1] ||| GlueTop=1\",10,\"[Goal] ||| [S,1] ||| [1]\"],\"features\":[\"PassThrough\",\"Glue\",\"GlueTop\",\"LanguageModel\",\"WordPenalty\",\"LHSProb\",\"LexE2F\",\"LexF2E\",\"GenerativeProb\",\"RulePenalty\",\"XFE\",\"XEF\",\"LabelledEF\",\"LabelledFE\",\"LogRuleCount\",\"SingletonRule\"],\"edges\":[{\"tail\":[],\"spans\":[0,1,-1,-1],\"feats\":[5,3.92173,6,2.90799,7,1.85003,8,10.5381,9,1,10,2.77259,11,0.441833,12,2.63906,13,4.96981,14,0.693147],\"rule\":1},{\"tail\":[],\"spans\":[0,1,-1,-1],\"feats\":[5,4.92173,6,3.90799,7,1.85003,8,11.5381,9,1,10,2.77259,11,1.44183,12,2.63906,13,4.96981,14,1.69315],\"rule\":2}],\"node\":{\"in_edges\":[0,1],\"cat\":\"X7\"},\"edges\":[{\"tail\":[0],\"spans\":[0,1,-1,-1],\"feats\":[2,1],\"rule\":3}],\"node\":{\"in_edges\":[2],\"cat\":\"S\"},\"edges\":[{\"tail\":[],\"spans\":[1,2,-1,-1],\"feats\":[5,3.96802,6,2.22462,7,1.83258,8,10.0863,9,1,11,1.20397,12,1.20397,13,-1.98341e-08,14,1.09861],\"rule\":4}],\"node\":{\"in_edges\":[3],\"cat\":\"X28\"},\"edges\":[{\"tail\":[],\"spans\":[1,2,-1,-1],\"feats\":[5,3.98479,6,1.79176,7,3.21888,8,11.1681,9,1,11,2.30259,12,2.30259,15,1],\"rule\":5}],\"node\":{\"in_edges\":[4],\"cat\":\"X0\"},\"edges\":[{\"tail\":[0],\"spans\":[0,2,-1,-1],\"feats\":[5,3.82533,6,3.21888,7,2.52573,8,11.3276,9,1,10,1.20397,11,1.20397,12,2.30259,13,2.30259,15,1],\"rule\":6}],\"node\":{\"in_edges\":[5],\"cat\":\"X8\"},\"edges\":[{\"tail\":[1,2],\"spans\":[0,2,-1,-1],\"feats\":[1,1],\"rule\":7},{\"tail\":[1,3],\"spans\":[0,2,-1,-1],\"feats\":[1,1],\"rule\":8},{\"tail\":[4],\"spans\":[0,2,-1,-1],\"feats\":[2,1],\"rule\":9}],\"node\":{\"in_edges\":[6,7,8],\"cat\":\"S\"},\"edges\":[{\"tail\":[5],\"spans\":[0,2,-1,-1],\"feats\":[],\"rule\":10}],\"node\":{\"in_edges\":[9],\"cat\":\"Goal\"}}"; + std::string path(boost::unit_test::framework::master_test_suite().argc == 2 ? boost::unit_test::framework::master_test_suite().argv[1] : TEST_DATA); + ReadFile rf(path + "/test-zero-origin.bin.gz"); + assert(rf); Hypergraph hg; - istringstream instr(json); - HypergraphIO::ReadFromJSON(&instr, &hg); + HypergraphIO::ReadFromBinary(rf.stream(), &hg); SparseVector<double> wts; wts.set_value(FD::Convert("PassThrough"), -0.929201533002898); hg.Reweight(wts); diff --git a/training/dpmert/mr_dpmert_generate_mapper_input.cc b/training/dpmert/mr_dpmert_generate_mapper_input.cc index 199cd23a..3fa2f476 100644 --- a/training/dpmert/mr_dpmert_generate_mapper_input.cc +++ b/training/dpmert/mr_dpmert_generate_mapper_input.cc @@ -70,7 +70,7 @@ int main(int argc, char** argv) { unsigned dev_set_size = conf["dev_set_size"].as<unsigned>(); for (unsigned i = 0; i < dev_set_size; ++i) { for (unsigned j = 0; j < directions.size(); ++j) { - cout << forest_repository << '/' << i << ".json.gz " << i << ' '; + cout << forest_repository << '/' << i << ".bin.gz " << i << ' '; print(cout, origin, "=", ";"); cout << ' '; print(cout, directions[j], "=", ";"); diff --git a/training/dpmert/mr_dpmert_map.cc b/training/dpmert/mr_dpmert_map.cc index d1efcf96..2bf3f8fc 100644 --- a/training/dpmert/mr_dpmert_map.cc +++ b/training/dpmert/mr_dpmert_map.cc @@ -83,7 +83,7 @@ int main(int argc, char** argv) { istringstream is(line); int sent_id; string file, s_origin, s_direction; - // path-to-file (JSON) sent_ed starting-point search-direction + // path-to-file sent_ed starting-point search-direction is >> file >> sent_id >> s_origin >> s_direction; SparseVector<double> origin; ReadSparseVectorString(s_origin, &origin); @@ -93,7 +93,7 @@ int main(int argc, char** argv) { if (last_file != file) { last_file = file; ReadFile rf(file); - HypergraphIO::ReadFromJSON(rf.stream(), &hg); + HypergraphIO::ReadFromBinary(rf.stream(), &hg); } const ConvexHullWeightFunction wf(origin, direction); const ConvexHull hull = Inside<ConvexHull, ConvexHullWeightFunction>(hg, NULL, wf); diff --git a/training/dpmert/test_data/0.bin.gz b/training/dpmert/test_data/0.bin.gz Binary files differnew file mode 100644 index 00000000..388298e9 --- /dev/null +++ b/training/dpmert/test_data/0.bin.gz diff --git a/training/dpmert/test_data/0.json.gz b/training/dpmert/test_data/0.json.gz Binary files differdeleted file mode 100644 index 30f8dd77..00000000 --- a/training/dpmert/test_data/0.json.gz +++ /dev/null diff --git a/training/dpmert/test_data/1.bin.gz b/training/dpmert/test_data/1.bin.gz Binary files differnew file mode 100644 index 00000000..44f9e0ff --- /dev/null +++ b/training/dpmert/test_data/1.bin.gz diff --git a/training/dpmert/test_data/1.json.gz b/training/dpmert/test_data/1.json.gz Binary files differdeleted file mode 100644 index c82cc179..00000000 --- a/training/dpmert/test_data/1.json.gz +++ /dev/null diff --git a/training/dpmert/test_data/test-ch-inside.bin.gz b/training/dpmert/test_data/test-ch-inside.bin.gz Binary files differnew file mode 100644 index 00000000..392f08c6 --- /dev/null +++ b/training/dpmert/test_data/test-ch-inside.bin.gz diff --git a/training/dpmert/test_data/test-zero-origin.bin.gz b/training/dpmert/test_data/test-zero-origin.bin.gz Binary files differnew file mode 100644 index 00000000..c641faaf --- /dev/null +++ b/training/dpmert/test_data/test-zero-origin.bin.gz diff --git a/training/minrisk/minrisk_optimize.cc b/training/minrisk/minrisk_optimize.cc index da8b5260..a2938fb0 100644 --- a/training/minrisk/minrisk_optimize.cc +++ b/training/minrisk/minrisk_optimize.cc @@ -178,7 +178,7 @@ int main(int argc, char** argv) { ReadFile rf(file); if (kis.size() % 5 == 0) { cerr << '.'; } if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; } - HypergraphIO::ReadFromJSON(rf.stream(), &hg); + HypergraphIO::ReadFromBinary(rf.stream(), &hg); hg.Reweight(weights); curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]); if (kbest_file.size()) diff --git a/training/pro/mr_pro_map.cc b/training/pro/mr_pro_map.cc index da58cd24..b142fd05 100644 --- a/training/pro/mr_pro_map.cc +++ b/training/pro/mr_pro_map.cc @@ -203,7 +203,7 @@ int main(int argc, char** argv) { const string kbest_file = os.str(); if (FileExists(kbest_file)) J_i.ReadFromFile(kbest_file); - HypergraphIO::ReadFromJSON(rf.stream(), &hg); + HypergraphIO::ReadFromBinary(rf.stream(), &hg); hg.Reweight(weights); J_i.AddKBestCandidates(hg, kbest_size, ds[sent_id]); J_i.WriteToFile(kbest_file); diff --git a/training/rampion/rampion_cccp.cc b/training/rampion/rampion_cccp.cc index 1e36dc51..1c45bac5 100644 --- a/training/rampion/rampion_cccp.cc +++ b/training/rampion/rampion_cccp.cc @@ -136,7 +136,7 @@ int main(int argc, char** argv) { ReadFile rf(file); if (kis.size() % 5 == 0) { cerr << '.'; } if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; } - HypergraphIO::ReadFromJSON(rf.stream(), &hg); + HypergraphIO::ReadFromBinary(rf.stream(), &hg); hg.Reweight(weights); curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]); if (kbest_file.size()) diff --git a/training/utils/grammar_convert.cc b/training/utils/grammar_convert.cc index 5c1b4d4a..04f1eb77 100644 --- a/training/utils/grammar_convert.cc +++ b/training/utils/grammar_convert.cc @@ -43,7 +43,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::notify(*conf); if (conf->count("help") || conf->count("input") == 0) { - cerr << "\nUsage: grammar_convert [-options]\n\nConverts a grammar file (in Hiero format) into JSON hypergraph.\n"; + cerr << "\nUsage: grammar_convert [-options]\n\nConverts a grammar file (in Hiero format) into serialized hypergraph.\n"; cerr << dcmdline_options << endl; exit(1); } @@ -254,7 +254,8 @@ void ProcessHypergraph(const vector<double>& w, const po::variables_map& conf, c if (w.size() > 0) { hg->Reweight(w); } if (conf.count("collapse_weights")) CollapseWeights(hg); if (conf["output"].as<string>() == "json") { - HypergraphIO::WriteToJSON(*hg, false, &cout); + cerr << "NOT IMPLEMENTED ... talk to cdyer if you need this functionality\n"; + // HypergraphIO::WriteToBinary(*hg, &cout); if (!ref.empty()) { cerr << "REF: " << ref << endl; } } else { vector<WordID> onebest; @@ -315,11 +316,11 @@ int main(int argc, char **argv) { line = line.substr(0, pos + 2); } istringstream is(line); - if (HypergraphIO::ReadFromJSON(&is, &hg)) { + if (HypergraphIO::ReadFromBinary(&is, &hg)) { ProcessHypergraph(w, conf, ref, &hg); hg.clear(); } else { - cerr << "Error reading grammar from JSON: line " << lc << endl; + cerr << "Error reading grammar line " << lc << endl; exit(1); } } else { |