summaryrefslogtreecommitdiff
path: root/training/dtrain
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain')
-rw-r--r--training/dtrain/Makefile.am2
-rw-r--r--training/dtrain/dtrain.cc686
-rw-r--r--training/dtrain/dtrain.h57
-rw-r--r--training/dtrain/examples/parallelized/README2
-rw-r--r--training/dtrain/examples/parallelized/dtrain.ini13
-rw-r--r--training/dtrain/examples/parallelized/work/out.0.074
-rw-r--r--training/dtrain/examples/parallelized/work/out.0.174
-rw-r--r--training/dtrain/examples/parallelized/work/out.0.274
-rw-r--r--training/dtrain/examples/parallelized/work/out.1.072
-rw-r--r--training/dtrain/examples/parallelized/work/out.1.174
-rw-r--r--training/dtrain/examples/parallelized/work/out.1.274
-rw-r--r--training/dtrain/examples/parallelized/work/out.2.072
-rw-r--r--training/dtrain/examples/parallelized/work/out.2.174
-rw-r--r--training/dtrain/examples/parallelized/work/out.2.274
-rw-r--r--training/dtrain/examples/parallelized/work/out.3.074
-rw-r--r--training/dtrain/examples/parallelized/work/out.3.172
-rw-r--r--training/dtrain/examples/parallelized/work/out.3.272
-rw-r--r--training/dtrain/examples/parallelized/work/shard.0.0.in4
-rw-r--r--training/dtrain/examples/parallelized/work/shard.1.0.in4
-rw-r--r--training/dtrain/examples/parallelized/work/shard.2.0.in4
-rw-r--r--training/dtrain/examples/parallelized/work/shard.3.0.in2
-rw-r--r--training/dtrain/examples/parallelized/work/weights.024
-rw-r--r--training/dtrain/examples/parallelized/work/weights.0.023
-rw-r--r--training/dtrain/examples/parallelized/work/weights.0.124
-rw-r--r--training/dtrain/examples/parallelized/work/weights.0.224
-rw-r--r--training/dtrain/examples/parallelized/work/weights.124
-rw-r--r--training/dtrain/examples/parallelized/work/weights.1.023
-rw-r--r--training/dtrain/examples/parallelized/work/weights.1.124
-rw-r--r--training/dtrain/examples/parallelized/work/weights.1.224
-rw-r--r--training/dtrain/examples/parallelized/work/weights.224
-rw-r--r--training/dtrain/examples/parallelized/work/weights.2.022
-rw-r--r--training/dtrain/examples/parallelized/work/weights.2.124
-rw-r--r--training/dtrain/examples/parallelized/work/weights.2.224
-rw-r--r--training/dtrain/examples/parallelized/work/weights.3.024
-rw-r--r--training/dtrain/examples/parallelized/work/weights.3.124
-rw-r--r--training/dtrain/examples/parallelized/work/weights.3.224
-rw-r--r--training/dtrain/examples/standard/dtrain.ini29
-rw-r--r--training/dtrain/examples/toy/dtrain.ini10
-rw-r--r--training/dtrain/examples/toy/expected-output79
-rw-r--r--training/dtrain/examples/toy/weights4
-rwxr-xr-xtraining/dtrain/lplp.rb5
-rw-r--r--training/dtrain/pairs.h55
-rwxr-xr-xtraining/dtrain/parallelize.rb92
-rw-r--r--training/dtrain/sample.h24
-rw-r--r--training/dtrain/score.h137
-rw-r--r--training/dtrain/update.h65
46 files changed, 933 insertions, 1577 deletions
diff --git a/training/dtrain/Makefile.am b/training/dtrain/Makefile.am
index 7717ec86..aadd376d 100644
--- a/training/dtrain/Makefile.am
+++ b/training/dtrain/Makefile.am
@@ -1,6 +1,6 @@
bin_PROGRAMS = dtrain
-dtrain_SOURCES = dtrain.cc dtrain.h sample.h pairs.h score.h
+dtrain_SOURCES = dtrain.cc dtrain.h sample.h update.h score.h
dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a
AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 69630206..1b7047b0 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -1,541 +1,207 @@
#include "dtrain.h"
#include "score.h"
#include "sample.h"
-#include "pairs.h"
+#include "update.h"
using namespace dtrain;
-
-bool
-dtrain_init(int argc, char** argv, po::variables_map* conf)
-{
- po::options_description ini("Configuration File Options");
- ini.add_options()
- ("bitext,b", po::value<string>(), "bitext: 'src ||| tgt ||| tgt ||| ...'")
- ("output,o", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
- ("input_weights,w", po::value<string>(), "input weights file (e.g. from previous iteration)")
- ("decoder_config,d", po::value<string>(), "configuration file for cdec")
- ("print_weights", po::value<string>(), "weights to print on each iteration")
- ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences")
- ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration")
- ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)")
- ("k", po::value<unsigned>()->default_value(100), "how many translations to sample")
- ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'")
- ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5")
- ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)")
- ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_")
- ("learning_rate", po::value<weight_t>()->default_value(1.0), "learning rate")
- ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)")
- ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)")
- ("rescale", po::value<bool>()->zero_tokens(), "(re)scale data and weight vector to unit length")
- ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization with clipping as in 'Tsuroka et al' (2010)")
- ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength")
- ("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPLEMENTED") // TODO
- ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near")
- ("pclr", po::value<string>()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate")
- ("batch", po::value<bool>()->zero_tokens(), "do batch optimization")
- ("repeat", po::value<unsigned>()->default_value(1), "repeat optimization over kbest list this number of times")
- ("output_ranking", po::value<string>()->default_value(""), "output scored kbests to dir")
- ("noup", po::value<bool>()->zero_tokens(), "dont't optimize");
- po::options_description cl("Command Line Options");
- cl.add_options()
- ("config,c", po::value<string>(), "dtrain config file")
- ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet")
- ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose");
- cl.add(ini);
- po::store(parse_command_line(argc, argv, cl), *conf);
- if (conf->count("config")) {
- ifstream ini_f((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(ini_f, ini), *conf);
- }
- po::notify(*conf);
- if (!conf->count("decoder_config")) {
- cerr << cl << endl;
- return false;
- }
- if ((*conf)["hi_lo"].as<float>() > 0.5 || (*conf)["hi_lo"].as<float>() < 0.01) {
- cerr << "hi_lo must lie in [0.01, 0.5]" << endl;
- return false;
- }
- if (!conf->count("bitext")) {
- cerr << "No training data given." << endl;
- return false;
- }
- if ((*conf)["select_weights"].as<string>() != "last" && (*conf)["select_weights"].as<string>() != "best" &&
- (*conf)["select_weights"].as<string>() != "avg" && (*conf)["select_weights"].as<string>() != "VOID") {
- cerr << "Wrong 'select_weights' param: '" << (*conf)["select_weights"].as<string>() << "', use 'last' or 'best'." << endl;
- return false;
- }
- return true;
-}
-
int
main(int argc, char** argv)
{
- // handle most parameters
+ // get configuration
po::variables_map conf;
- if (!dtrain_init(argc, argv, &conf)) exit(1); // something is wrong
-
- bool quiet = false;
- if (conf.count("quiet")) quiet = true;
- bool verbose = false;
- if (conf.count("verbose")) verbose = true;
- bool noup = false;
- if (conf.count("noup")) noup = true;
- bool keep = false;
- if (conf.count("keep")) keep = true;
- bool rescale = false;
- if (conf.count("rescale")) rescale = true;
-
- const unsigned k = conf["k"].as<unsigned>();
- const unsigned N = conf["N"].as<unsigned>();
- const unsigned T = conf["epochs"].as<unsigned>();
- const unsigned stop_after = conf["stop_after"].as<unsigned>();
- const string select_weights = conf["select_weights"].as<string>();
- const string output_ranking = conf["output_ranking"].as<string>();
- const float hi_lo = conf["hi_lo"].as<float>();
- int repeat = conf["repeat"].as<unsigned>();
- weight_t loss_margin = conf["loss_margin"].as<weight_t>();
- bool batch = false;
- if (conf.count("batch")) batch = true;
- if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max();
- const string pclr = conf["pclr"].as<string>();
- bool average = false;
- if (select_weights == "avg")
- average = true;
+ if (!dtrain_init(argc, argv, &conf))
+ exit(1); // something is wrong
+ const size_t k = conf["k"].as<size_t>();
+ const size_t N = conf["N"].as<size_t>();
+ const size_t T = conf["iterations"].as<size_t>();
+ const weight_t eta = conf["learning_rate"].as<weight_t>();
+ const weight_t error_margin = conf["error_margin"].as<weight_t>();
+ const bool average = conf["average"].as<bool>();
+ const bool keep = conf["keep"].as<bool>();
+ const weight_t l1_reg = conf["l1_reg"].as<weight_t>();
+ const string output_fn = conf["output"].as<string>();
vector<string> print_weights;
- if (conf.count("print_weights"))
- boost::split(print_weights, conf["print_weights"].as<string>(), boost::is_any_of(" "));
+ boost::split(print_weights, conf["print_weights"].as<string>(), boost::is_any_of(" "));
// setup decoder
register_feature_functions();
SetSilent(true);
- ReadFile ini_rf(conf["decoder_config"].as<string>());
- if (!quiet)
- cerr << setw(25) << "cdec conf " << "'" << conf["decoder_config"].as<string>() << "'" << endl;
- Decoder decoder(ini_rf.stream());
+ ReadFile f(conf["decoder_config"].as<string>());
+ Decoder decoder(f.stream());
// setup decoder observer
ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N));
- // init weights
+ // weights
vector<weight_t>& decoder_weights = decoder.CurrentWeightVector();
-
- SparseVector<weight_t> lambdas, cumulative_penalties, w_average, fixed;
- if (conf.count("input_weights"))
+ SparseVector<weight_t> lambdas, w_average;
+ if (conf.count("input_weights")) {
Weights::InitFromFile(conf["input_weights"].as<string>(), &decoder_weights);
- Weights::InitSparseVector(decoder_weights, &lambdas);
-
- // meta params for perceptron, SVM
- weight_t eta = conf["learning_rate"].as<weight_t>();
- weight_t gamma = conf["gamma"].as<weight_t>();
-
- // faster perceptron: consider only misranked pairs, see
- bool faster_perceptron = false;
- if (gamma==0 && loss_margin==0) faster_perceptron = true;
-
- // l1 regularization
- bool l1naive = false;
- bool l1clip = false;
- bool l1cumul = false;
- weight_t l1_reg = 0;
- if (conf["l1_reg"].as<string>() != "none") {
- string s = conf["l1_reg"].as<string>();
- if (s == "naive") l1naive = true;
- else if (s == "clip") l1clip = true;
- else if (s == "cumul") l1cumul = true;
- l1_reg = conf["l1_reg_strength"].as<weight_t>();
+ Weights::InitSparseVector(decoder_weights, &lambdas);
}
- // output
- string output_fn = conf["output"].as<string>();
// input
- string input_fn;
- ReadFile input(conf["bitext"].as<string>());
- // buffer input for t > 0
- vector<string> src_str_buf; // source strings (decoder takes only strings)
- vector<vector<vector<WordID> > > refs_as_ids_buf; // references as WordID vecs
-
- unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size
- vector<pair<score_t, score_t> > all_scores;
- score_t max_score = 0.;
- unsigned best_it = 0;
- float overall_time = 0.;
-
- // output conf
- if (!quiet) {
- cerr << _p5;
- cerr << endl << "dtrain" << endl << "Parameters:" << endl;
- cerr << setw(25) << "k " << k << endl;
- cerr << setw(25) << "N " << N << endl;
- cerr << setw(25) << "T " << T << endl;
- cerr << setw(25) << "batch " << batch << endl;
- cerr << setw(25) << "learning rate " << eta << endl;
- cerr << setw(25) << "gamma " << gamma << endl;
- cerr << setw(25) << "loss margin " << loss_margin << endl;
- cerr << setw(25) << "faster perceptron " << faster_perceptron << endl;
- cerr << setw(25) << "hi lo " << hi_lo << endl;
- cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl;
- if (conf.count("l1_reg"))
- cerr << setw(25) << "l1 reg " << l1_reg << " '" << conf["l1_reg"].as<string>() << "'" << endl;
- if (rescale)
- cerr << setw(25) << "rescale " << rescale << endl;
- cerr << setw(25) << "pclr " << pclr << endl;
- cerr << setw(25) << "repeat " << repeat << endl;
- cerr << setw(25) << "cdec conf " << "'" << conf["decoder_config"].as<string>() << "'" << endl;
- cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
- cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
- if (conf.count("input_weights"))
- cerr << setw(25) << "weights in " << "'" << conf["input_weights"].as<string>() << "'" << endl;
- if (stop_after > 0)
- cerr << setw(25) << "stop_after " << stop_after << endl;
- if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl;
- }
+ string input_fn = conf["bitext"].as<string>();
+ ReadFile input(input_fn);
+ vector<string> buf; // source strings (decoder takes only strings)
+ vector<vector<Ngrams> > buf_ngs; // compute ngrams and lengths of references
+ vector<vector<size_t> > buf_ls; // just once
+ size_t input_sz = 0;
+
+ // output configuration
+ cerr << _p5 << "dtrain" << endl << "Parameters:" << endl;
+ cerr << setw(25) << "k " << k << endl;
+ cerr << setw(25) << "N " << N << endl;
+ cerr << setw(25) << "T " << T << endl;
+ cerr << setw(25) << "learning rate " << eta << endl;
+ cerr << setw(25) << "error margin " << error_margin << endl;
+ cerr << setw(25) << "l1 reg " << l1_reg << endl;
+ cerr << setw(25) << "decoder conf " << "'" << conf["decoder_config"].as<string>() << "'" << endl;
+ cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
+ cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
+ if (conf.count("input_weights"))
+ cerr << setw(25) << "weights in " << "'" << conf["input_weights"].as<string>() << "'" << endl;
+ cerr << "(a dot per input)" << endl;
- // pclr
- SparseVector<weight_t> learning_rates;
- // batch
- SparseVector<weight_t> batch_updates;
- score_t batch_loss;
+ // meta
+ weight_t best=0., gold_prev=0.;
+ size_t best_iteration = 0;
+ time_t total_time = 0.;
- for (unsigned t = 0; t < T; t++) // T epochs
+ for (size_t t = 0; t < T; t++) // T iterations
{
time_t start, end;
time(&start);
- score_t score_sum = 0.;
- score_t model_sum(0);
- unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0, kbest_loss_improve = 0;
- batch_loss = 0.;
- if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
+ weight_t gold_sum=0., model_sum=0.;
+ size_t i = 0, num_pairs = 0, feature_count = 0, list_sz = 0;
+
+ cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
while(true)
{
+ bool next = true;
- string in;
- vector<string> refs;
- bool next = false, stop = false; // next iteration or premature stop
+ // getting input
if (t == 0) {
- if(!getline(*input, in)) next = true;
- boost::algorithm::split_regex(refs, in, boost::regex(" \\|\\|\\| "));
- in = refs[0];
- refs.erase(refs.begin());
- } else {
- if (ii == in_sz) next = true; // stop if we reach the end of our input
- }
- // stop after X sentences (but still go on for those)
- if (stop_after > 0 && stop_after == ii && !next) stop = true;
-
- // produce some pretty output
- if (!quiet && !verbose) {
- if (ii == 0) cerr << " ";
- if ((ii+1) % (DTRAIN_DOTS) == 0) {
- cerr << ".";
- cerr.flush();
- }
- if ((ii+1) % (20*DTRAIN_DOTS) == 0) {
- cerr << " " << ii+1 << endl;
- if (!next && !stop) cerr << " ";
- }
- if (stop) {
- if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
- cerr << "Stopping after " << stop_after << " input sentences." << endl;
+ string in;
+ if(!getline(*input, in)) {
+ next = false;
} else {
- if (next) {
- if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
+ vector<string> parts;
+ boost::algorithm::split_regex(parts, in, boost::regex(" \\|\\|\\| "));
+ buf.push_back(parts[0]);
+ parts.erase(parts.begin());
+ buf_ngs.push_back({});
+ buf_ls.push_back({});
+ for (auto s: parts) {
+ vector<WordID> r;
+ vector<string> tok;
+ boost::split(tok, s, boost::is_any_of(" "));
+ RegisterAndConvert(tok, r);
+ buf_ngs.back().emplace_back(MakeNgrams(r, N));
+ buf_ls.back().push_back(r.size());
}
}
+ } else {
+ next = i<input_sz;
}
- // next iteration
- if (next || stop) break;
-
- // weights
- lambdas.init_vector(&decoder_weights);
-
- // getting input
- if (t == 0) {
- vector<vector<WordID> > cur_refs;
- for (auto r: refs) {
- vector<WordID> cur_ref;
- vector<string> tok;
- boost::split(tok, r, boost::is_any_of(" "));
- RegisterAndConvert(tok, cur_ref);
- cur_refs.push_back(cur_ref);
- }
- refs_as_ids_buf.push_back(cur_refs);
- src_str_buf.push_back(in);
- }
- observer->SetReference(refs_as_ids_buf[ii]);
- if (t == 0)
- decoder.Decode(in, observer);
- else
- decoder.Decode(src_str_buf[ii], observer);
-
- // get (scored) samples
+ // produce some pretty output
+ if (i == 0 || (i+1)%20==0)
+ cerr << " ";
+ cerr << ".";
+ cerr.flush();
+ if (!next)
+ if (i%20 != 0) cerr << " " << i << endl;
+
+ // stop iterating
+ if (!next) break;
+
+ // decode
+ if (t > 0 || i > 0)
+ lambdas.init_vector(&decoder_weights);
+ observer->SetReference(buf_ngs[i], buf_ls[i]);
+ decoder.Decode(buf[i], observer);
vector<ScoredHyp>* samples = observer->GetSamples();
- if (output_ranking != "") {
- WriteFile of(output_ranking+"/"+to_string(t)+"."+to_string(ii)+".list"); // works with '-'
- stringstream ss;
- for (auto s: *samples) {
- ss << ii << " ||| ";
- PrintWordIDVec(s.w, ss);
- ss << " ||| " << s.model << " ||| " << s.score << endl;
- }
- of.get() << ss.str();
- }
-
- if (verbose) {
- cerr << "--- refs for " << ii << ": ";
- for (auto r: refs_as_ids_buf[ii]) {
- PrintWordIDVec(r);
- cerr << endl;
- }
- for (unsigned u = 0; u < samples->size(); u++) {
- cerr << _p2 << _np << "[" << u << ". '";
- PrintWordIDVec((*samples)[u].w);
- cerr << "'" << endl;
- cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl;
- cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl;
- }
- }
-
- if (repeat == 1) {
- score_sum += (*samples)[0].score; // stats for 1best
- model_sum += (*samples)[0].model;
- }
-
- f_count += observer->GetFeatureCount();
+ // stats for 1best
+ gold_sum += samples->front().gold;
+ model_sum += samples->front().model;
+ feature_count += observer->GetFeatureCount();
list_sz += observer->GetSize();
- // weight updates
- if (!noup) {
- // get pairs
- vector<pair<ScoredHyp,ScoredHyp> > pairs;
- MakePairs(samples, pairs, faster_perceptron, hi_lo);
- int cur_npairs = pairs.size();
- npairs += cur_npairs;
-
- score_t kbest_loss_first = 0.0, kbest_loss_last = 0.0;
-
- for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();
- it != pairs.end(); it++) {
- if (rescale) {
- it->first.f /= it->first.f.l2norm();
- it->second.f /= it->second.f.l2norm();
- }
- score_t model_diff = it->first.model - it->second.model;
- score_t loss = max(0.0, -1.0 * model_diff);
- kbest_loss_first += loss;
- }
-
- score_t kbest_loss = 0.0;
- for (int ki=0; ki < repeat; ki++) {
-
- SparseVector<weight_t> lambdas_copy; // for l1 regularization
- SparseVector<weight_t> sum_up; // for pclr
- if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas;
-
- for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();
- it != pairs.end(); it++) {
- score_t model_diff = it->first.model - it->second.model;
- score_t loss = max(0.0, -1.0 * model_diff);
-
- if (repeat > 1) {
- model_diff = lambdas.dot(it->first.f) - lambdas.dot(it->second.f);
- kbest_loss += loss;
- }
- bool rank_error = false;
- score_t margin;
- if (faster_perceptron) { // we only have considering misranked pairs
- rank_error = true; // pair sampling already did this for us
- margin = std::numeric_limits<float>::max();
- } else {
- rank_error = model_diff<=0.0;
- margin = fabs(model_diff);
- if (!rank_error && margin < loss_margin) margin_violations++;
- }
- if (rank_error && ki==0) rank_errors++;
- if (rank_error || margin < loss_margin) {
- SparseVector<weight_t> diff_vec = it->first.f - it->second.f;
- if (batch) {
- batch_loss += max(0., -1.0 * model_diff);
- batch_updates += diff_vec;
- continue;
- }
- if (pclr != "no") {
- sum_up += diff_vec;
+ // get pairs and update
+ vector<pair<ScoredHyp,ScoredHyp> > pairs;
+ SparseVector<weight_t> updates;
+ num_pairs += CollectUpdates(samples, updates, error_margin);
+ SparseVector<weight_t> lambdas_copy;
+ if (l1_reg)
+ lambdas_copy = lambdas;
+ lambdas.plus_eq_v_times_s(updates, eta);
+
+ // l1 regularization
+ // NB: regularization is done after each sentence,
+ // not after every single pair!
+ if (l1_reg) {
+ SparseVector<weight_t>::iterator it = lambdas.begin();
+ for (; it != lambdas.end(); ++it) {
+ if (it->second == 0) continue;
+ if (!lambdas_copy.get(it->first) // new or..
+ || lambdas_copy.get(it->first)!=it->second) // updated feature
+ {
+ weight_t v = it->second;
+ if (v > 0) {
+ it->second = max(0., v - l1_reg);
} else {
- lambdas.plus_eq_v_times_s(diff_vec, eta);
- if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./cur_npairs));
- }
- }
- }
-
- // per-coordinate learning rate
- if (pclr != "no") {
- SparseVector<weight_t>::iterator it = sum_up.begin();
- for (; it != sum_up.end(); ++it) {
- if (pclr == "simple") {
- lambdas[it->first] += it->second / max(1.0, learning_rates[it->first]);
- learning_rates[it->first]++;
- } else if (pclr == "adagrad") {
- if (learning_rates[it->first] == 0) {
- lambdas[it->first] += it->second * eta;
- } else {
- lambdas[it->first] += it->second * eta * learning_rates[it->first];
- }
- learning_rates[it->first] += pow(it->second, 2.0);
+ it->second = min(0., v + l1_reg);
}
}
}
+ }
- // l1 regularization
- // please note that this regularizations happen
- // after a _sentence_ -- not after each example/pair!
- if (l1naive) {
- SparseVector<weight_t>::iterator it = lambdas.begin();
- for (; it != lambdas.end(); ++it) {
- if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) {
- it->second *= max(0.0000001, eta/(eta+learning_rates[it->first])); // FIXME
- learning_rates[it->first]++;
- it->second -= sign(it->second) * l1_reg;
- }
- }
- } else if (l1clip) {
- SparseVector<weight_t>::iterator it = lambdas.begin();
- for (; it != lambdas.end(); ++it) {
- if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) {
- if (it->second != 0) {
- weight_t v = it->second;
- if (v > 0) {
- it->second = max(0., v - l1_reg);
- } else {
- it->second = min(0., v + l1_reg);
- }
- }
- }
- }
- } else if (l1cumul) {
- weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input
- SparseVector<weight_t>::iterator it = lambdas.begin();
- for (; it != lambdas.end(); ++it) {
- if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) {
- if (it->second != 0) {
- weight_t v = it->second;
- weight_t penalized = 0.;
- if (v > 0) {
- penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first)));
- } else {
- penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first)));
- }
- it->second = penalized;
- cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized);
- }
- }
- }
- }
-
- if (ki==repeat-1) { // done
- kbest_loss_last = kbest_loss;
- if (repeat > 1) {
- score_t best_model = -std::numeric_limits<score_t>::max();
- unsigned best_idx = 0;
- for (unsigned i=0; i < samples->size(); i++) {
- score_t s = lambdas.dot((*samples)[i].f);
- if (s > best_model) {
- best_idx = i;
- best_model = s;
- }
- }
- score_sum += (*samples)[best_idx].score;
- model_sum += best_model;
- }
- }
- } // repeat
-
- if ((kbest_loss_first - kbest_loss_last) >= 0) kbest_loss_improve++;
-
- } // noup
-
- if (rescale) lambdas /= lambdas.l2norm();
-
- ++ii;
+ i++;
} // input loop
- if (t == 0) in_sz = ii; // remember size of input (# lines)
-
- if (batch) {
- lambdas.plus_eq_v_times_s(batch_updates, eta);
- if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
- batch_updates.clear();
- }
-
- if (average) w_average += lambdas;
-
- // print some stats
- score_t score_avg = score_sum/(score_t)in_sz;
- score_t model_avg = model_sum/(score_t)in_sz;
- score_t score_diff, model_diff;
- if (t > 0) {
- score_diff = score_avg - all_scores[t-1].first;
- model_diff = model_avg - all_scores[t-1].second;
- } else {
- score_diff = score_avg;
- model_diff = model_avg;
+ if (t == 0)
+ input_sz = i; // remember size of input (# lines)
+
+ // update average
+ if (average)
+ w_average += lambdas;
+
+ // stats
+ weight_t gold_avg = gold_sum/(weight_t)input_sz;
+ size_t non_zero = (size_t)lambdas.num_nonzero();
+ cerr << _p5 << _p << "WEIGHTS" << endl;
+ for (auto name: print_weights)
+ cerr << setw(18) << name << " = " << lambdas.get(FD::Convert(name)) << endl;
+ cerr << " ---" << endl;
+ cerr << _np << " 1best avg score: " << gold_avg;
+ cerr << _p << " (" << gold_avg-gold_prev << ")" << endl;
+ cerr << _np << " 1best avg model score: " << model_sum/(weight_t)input_sz << endl;
+ cerr << " avg # pairs: ";
+ cerr << _np << num_pairs/(float)input_sz << endl;
+ cerr << " non-0 feature count: " << non_zero << endl;
+ cerr << " avg list sz: " << list_sz/(float)input_sz << endl;
+ cerr << " avg f count: " << feature_count/(float)list_sz << endl;
+
+ if (gold_avg > best) {
+ best = gold_avg;
+ best_iteration = t;
}
+ gold_prev = gold_avg;
- unsigned nonz = 0;
- if (!quiet) nonz = (unsigned)lambdas.num_nonzero();
-
- if (!quiet) {
- cerr << _p5 << _p << "WEIGHTS" << endl;
- for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) {
- cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl;
- }
- cerr << " ---" << endl;
- cerr << _np << " 1best avg score: " << score_avg;
- cerr << _p << " (" << score_diff << ")" << endl;
- cerr << _np << " 1best avg model score: " << model_avg;
- cerr << _p << " (" << model_diff << ")" << endl;
- cerr << " avg # pairs: ";
- cerr << _np << npairs/(float)in_sz << endl;
- cerr << " avg # rank err: ";
- cerr << rank_errors/(float)in_sz;
- if (faster_perceptron) cerr << " (meaningless)";
- cerr << endl;
- cerr << " avg # margin viol: ";
- cerr << margin_violations/(float)in_sz << endl;
- if (batch) cerr << " batch loss: " << batch_loss << endl;
- cerr << " k-best loss imp: " << ((float)kbest_loss_improve/in_sz)*100 << "%" << endl;
- cerr << " non0 feature count: " << nonz << endl;
- cerr << " avg list sz: " << list_sz/(float)in_sz << endl;
- cerr << " avg f count: " << f_count/(float)list_sz << endl;
- }
-
- pair<score_t,score_t> remember;
- remember.first = score_avg;
- remember.second = model_avg;
- all_scores.push_back(remember);
- if (score_avg > max_score) {
- max_score = score_avg;
- best_it = t;
- }
time (&end);
- float time_diff = difftime(end, start);
- overall_time += time_diff;
- if (!quiet) {
- cerr << _p2 << _np << "(time " << time_diff/60. << " min, ";
- cerr << time_diff/in_sz << " s/S)" << endl;
- }
- if (t+1 != T && !quiet) cerr << endl;
-
- if (noup) break;
+ time_t time_diff = difftime(end, start);
+ total_time += time_diff;
+ cerr << _p2 << _np << "(time " << time_diff/60. << " min, ";
+ cerr << time_diff/input_sz << " s/S)" << endl;
+ if (t+1 != T) cerr << endl;
- // write weights to file
- if (select_weights == "best" || keep) {
+ if (keep) { // keep intermediate weights
lambdas.init_vector(&decoder_weights);
string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz";
Weights::WriteToFile(w_fn, decoder_weights, true);
@@ -543,51 +209,19 @@ main(int argc, char** argv)
} // outer loop
- if (average) w_average /= (weight_t)T;
-
- if (!noup) {
- if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl;
- if (select_weights == "last" || average) { // last, average
- WriteFile of(output_fn);
- ostream& o = *of.stream();
- o.precision(17);
- o << _np;
- if (average) {
- for (SparseVector<weight_t>::iterator it = w_average.begin(); it != w_average.end(); ++it) {
- if (it->second == 0) continue;
- o << FD::Convert(it->first) << '\t' << it->second << endl;
- }
- } else {
- for (SparseVector<weight_t>::iterator it = lambdas.begin(); it != lambdas.end(); ++it) {
- if (it->second == 0) continue;
- o << FD::Convert(it->first) << '\t' << it->second << endl;
- }
- }
- } else if (select_weights == "VOID") { // do nothing with the weights
- } else { // best
- if (output_fn != "-") {
- CopyFile("weights."+boost::lexical_cast<string>(best_it)+".gz", output_fn);
- } else {
- ReadFile bestw("weights."+boost::lexical_cast<string>(best_it)+".gz");
- string o;
- cout.precision(17);
- cout << _np;
- while(getline(*bestw, o)) cout << o << endl;
- }
- if (!keep) {
- for (unsigned i = 0; i < T; i++) {
- string s = "weights." + boost::lexical_cast<string>(i) + ".gz";
- unlink(s.c_str());
- }
- }
- }
- if (!quiet) cerr << "done" << endl;
+ // final weights
+ if (average) {
+ w_average /= (weight_t)T;
+ w_average.init_vector(decoder_weights);
+ } else if (!keep) {
+ lambdas.init_vector(decoder_weights);
}
+ Weights::WriteToFile(output_fn, decoder_weights, true);
- if (!quiet) {
- cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
- cerr << best_it+1 << " [SCORE = " << max_score << "]." << endl;
- cerr << "This took " << overall_time/60. << " min." << endl;
- }
+ cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
+ cerr << best_iteration+1 << " [GOLD = " << best << "]." << endl;
+ cerr << "This took " << total_time/60. << " min." << endl;
+
+ return 0;
}
diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h
index 2b466930..728b0698 100644
--- a/training/dtrain/dtrain.h
+++ b/training/dtrain/dtrain.h
@@ -1,9 +1,6 @@
#ifndef _DTRAIN_H_
#define _DTRAIN_H_
-#define DTRAIN_DOTS 10 // after how many inputs to display a '.'
-#define DTRAIN_SCALE 100000
-
#include <iomanip>
#include <climits>
#include <string.h>
@@ -25,20 +22,17 @@ namespace po = boost::program_options;
namespace dtrain
{
-typedef double score_t;
-
struct ScoredHyp
{
- vector<WordID> w;
+ vector<WordID> w;
SparseVector<weight_t> f;
- score_t model, score;
- unsigned rank;
+ weight_t model, gold;
+ size_t rank;
};
inline void
RegisterAndConvert(const vector<string>& strs, vector<WordID>& ids)
{
- vector<string>::const_iterator it;
for (auto s: strs)
ids.push_back(TD::Convert(s));
}
@@ -46,7 +40,7 @@ RegisterAndConvert(const vector<string>& strs, vector<WordID>& ids)
inline void
PrintWordIDVec(vector<WordID>& v, ostream& os=cerr)
{
- for (unsigned i = 0; i < v.size(); i++) {
+ for (size_t i = 0; i < v.size(); i++) {
os << TD::Convert(v[i]);
if (i < v.size()-1) os << " ";
}
@@ -57,12 +51,45 @@ inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); }
inline ostream& _p2(ostream& out) { return out << setprecision(2); }
inline ostream& _p5(ostream& out) { return out << setprecision(5); }
-template<typename T>
-inline T
-sign(T z)
+bool
+dtrain_init(int argc, char** argv, po::variables_map* conf)
{
- if (z == 0) return 0;
- return z < 0 ? -1 : +1;
+ po::options_description ini("Configuration File Options");
+ ini.add_options()
+ ("bitext,b", po::value<string>(), "bitext")
+ ("decoder_config,C", po::value<string>(), "configuration file for decoder")
+ ("iterations,T", po::value<size_t>()->default_value(10), "number of iterations T (per shard)")
+ ("k", po::value<size_t>()->default_value(100), "size of kbest list")
+ ("learning_rate,l", po::value<weight_t>()->default_value(1.0), "learning rate")
+ ("l1_reg,r", po::value<weight_t>()->default_value(0.), "l1 regularization strength")
+ ("error_margin,m", po::value<weight_t>()->default_value(0.), "margin for margin perceptron")
+ ("N", po::value<size_t>()->default_value(4), "N for BLEU approximation")
+ ("input_weights,w", po::value<string>(), "input weights file")
+ ("average,a", po::value<bool>()->default_value(false), "output average weights")
+ ("keep,K", po::value<bool>()->default_value(false), "output a weight file per iteration")
+ ("output,o", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
+ ("print_weights,P", po::value<string>()->default_value("EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV"),
+ "list of weights to print after each iteration");
+ po::options_description cl("Command Line Options");
+ cl.add_options()
+ ("config,c", po::value<string>(), "dtrain config file");
+ cl.add(ini);
+ po::store(parse_command_line(argc, argv, cl), *conf);
+ if (conf->count("config")) {
+ ifstream f((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(f, ini), *conf);
+ }
+ po::notify(*conf);
+ if (!conf->count("decoder_config")) {
+ cerr << "Missing decoder configuration." << endl;
+ return false;
+ }
+ if (!conf->count("bitext")) {
+ cerr << "No training data given." << endl;
+ return false;
+ }
+
+ return true;
}
} // namespace
diff --git a/training/dtrain/examples/parallelized/README b/training/dtrain/examples/parallelized/README
index 2fb3b54e..c4addd81 100644
--- a/training/dtrain/examples/parallelized/README
+++ b/training/dtrain/examples/parallelized/README
@@ -1,5 +1,5 @@
run for example
- ../../parallelize.rb -c dtrain.ini -s 4 -e 3 -z -d ../../dtrain -p 2 -i in
+ ../../parallelize.rb -c dtrain.ini -s 4 -e 3 -d ../../dtrain -p 2 -i in
final weights will be in the file work/weights.2
diff --git a/training/dtrain/examples/parallelized/dtrain.ini b/training/dtrain/examples/parallelized/dtrain.ini
index 0b0932d6..9fc205a3 100644
--- a/training/dtrain/examples/parallelized/dtrain.ini
+++ b/training/dtrain/examples/parallelized/dtrain.ini
@@ -1,14 +1,7 @@
k=100
N=4
learning_rate=0.0001
-gamma=0
-loss_margin=1.0
-epochs=1
-scorer=stupid_bleu
-sample_from=kbest
-filter=uniq
-pair_sampling=XYX
-hi_lo=0.1
-select_weights=last
-print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
+error_margin=1.0
+iterations=1
decoder_config=cdec.ini
+print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
diff --git a/training/dtrain/examples/parallelized/work/out.0.0 b/training/dtrain/examples/parallelized/work/out.0.0
index 9154c906..77749404 100644
--- a/training/dtrain/examples/parallelized/work/out.0.0
+++ b/training/dtrain/examples/parallelized/work/out.0.0
@@ -1,65 +1,43 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 4087834873
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.0.0.in'
output 'work/weights.0.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = +0.257
- WordPenalty = +0.026926
- LanguageModel = +0.67342
- LanguageModel_OOV = -0.046
- PhraseModel_0 = +0.25329
- PhraseModel_1 = +0.20036
- PhraseModel_2 = +0.00060731
- PhraseModel_3 = +0.65578
- PhraseModel_4 = +0.47916
- PhraseModel_5 = +0.004
- PhraseModel_6 = +0.1829
- PassThrough = -0.082
+ Glue = +0.3404
+ WordPenalty = -0.017632
+ LanguageModel = +0.72958
+ LanguageModel_OOV = -0.235
+ PhraseModel_0 = -0.43721
+ PhraseModel_1 = +1.01
+ PhraseModel_2 = +1.3525
+ PhraseModel_3 = -0.25541
+ PhraseModel_4 = -0.78115
+ PhraseModel_5 = +0
+ PhraseModel_6 = -0.3681
+ PassThrough = -0.3304
---
- 1best avg score: 0.04518 (+0.04518)
- 1best avg model score: 32.803 (+32.803)
- avg # pairs: 1266.3
- avg # rank err: 857
- avg # margin viol: 386.67
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.19474 (+0.19474)
+ 1best avg model score: 0.52232
+ avg # pairs: 2513
+ non-0 feature count: 11
avg list sz: 100
- avg f count: 10.853
-(time 0.47 min, 9.3 s/S)
-
-Writing weights file to 'work/weights.0.0' ...
-done
+ avg f count: 11.42
+(time 0.32 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.04518].
-This took 0.46667 min.
+Best iteration: 1 [GOLD = 0.19474].
+This took 0.31667 min.
diff --git a/training/dtrain/examples/parallelized/work/out.0.1 b/training/dtrain/examples/parallelized/work/out.0.1
index 0dbc7bd3..d0dee623 100644
--- a/training/dtrain/examples/parallelized/work/out.0.1
+++ b/training/dtrain/examples/parallelized/work/out.0.1
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 2283043509
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.0.0.in'
output 'work/weights.0.1'
weights in 'work/weights.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.17905
- WordPenalty = +0.062126
- LanguageModel = +0.66825
- LanguageModel_OOV = -0.15248
- PhraseModel_0 = -0.55811
- PhraseModel_1 = +0.12741
- PhraseModel_2 = +0.60388
- PhraseModel_3 = -0.44464
- PhraseModel_4 = -0.63137
- PhraseModel_5 = -0.0084
- PhraseModel_6 = -0.20165
- PassThrough = -0.23468
+ Glue = -0.40908
+ WordPenalty = +0.12967
+ LanguageModel = +0.39892
+ LanguageModel_OOV = -0.6314
+ PhraseModel_0 = -0.63992
+ PhraseModel_1 = +0.74198
+ PhraseModel_2 = +1.3096
+ PhraseModel_3 = -0.1216
+ PhraseModel_4 = -1.2274
+ PhraseModel_5 = +0.02435
+ PhraseModel_6 = -0.21093
+ PassThrough = -0.66155
---
- 1best avg score: 0.14066 (+0.14066)
- 1best avg model score: -37.614 (-37.614)
- avg # pairs: 1244.7
- avg # rank err: 728
- avg # margin viol: 516.67
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.15735 (+0.15735)
+ 1best avg model score: 46.831
+ avg # pairs: 2132.3
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 11.507
-(time 0.45 min, 9 s/S)
-
-Writing weights file to 'work/weights.0.1' ...
-done
+ avg f count: 10.64
+(time 0.38 min, 7 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.14066].
-This took 0.45 min.
+Best iteration: 1 [GOLD = 0.15735].
+This took 0.38333 min.
diff --git a/training/dtrain/examples/parallelized/work/out.0.2 b/training/dtrain/examples/parallelized/work/out.0.2
index fcecc7e1..9c4b110b 100644
--- a/training/dtrain/examples/parallelized/work/out.0.2
+++ b/training/dtrain/examples/parallelized/work/out.0.2
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 3693132895
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.0.0.in'
output 'work/weights.0.2'
weights in 'work/weights.1'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.019275
- WordPenalty = +0.022192
- LanguageModel = +0.40688
- LanguageModel_OOV = -0.36397
- PhraseModel_0 = -0.36273
- PhraseModel_1 = +0.56432
- PhraseModel_2 = +0.85638
- PhraseModel_3 = -0.20222
- PhraseModel_4 = -0.48295
- PhraseModel_5 = +0.03145
- PhraseModel_6 = -0.26092
- PassThrough = -0.38122
+ Glue = -0.44422
+ WordPenalty = +0.1032
+ LanguageModel = +0.66474
+ LanguageModel_OOV = -0.62252
+ PhraseModel_0 = -0.59993
+ PhraseModel_1 = +0.78992
+ PhraseModel_2 = +1.3149
+ PhraseModel_3 = +0.21434
+ PhraseModel_4 = -1.0174
+ PhraseModel_5 = +0.02435
+ PhraseModel_6 = -0.18452
+ PassThrough = -0.65268
---
- 1best avg score: 0.18982 (+0.18982)
- 1best avg model score: 1.7096 (+1.7096)
- avg # pairs: 1524.3
- avg # rank err: 813.33
- avg # margin viol: 702.67
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.24722 (+0.24722)
+ 1best avg model score: 61.971
+ avg # pairs: 2017.7
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 11.32
-(time 0.53 min, 11 s/S)
-
-Writing weights file to 'work/weights.0.2' ...
-done
+ avg f count: 10.42
+(time 0.3 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.18982].
-This took 0.53333 min.
+Best iteration: 1 [GOLD = 0.24722].
+This took 0.3 min.
diff --git a/training/dtrain/examples/parallelized/work/out.1.0 b/training/dtrain/examples/parallelized/work/out.1.0
index 595dfc94..3dc4dca6 100644
--- a/training/dtrain/examples/parallelized/work/out.1.0
+++ b/training/dtrain/examples/parallelized/work/out.1.0
@@ -1,65 +1,43 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 859043351
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.1.0.in'
output 'work/weights.1.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.3229
- WordPenalty = +0.27969
- LanguageModel = +1.3645
- LanguageModel_OOV = -0.0443
- PhraseModel_0 = -0.19049
- PhraseModel_1 = -0.077698
- PhraseModel_2 = +0.058898
- PhraseModel_3 = +0.017251
- PhraseModel_4 = -1.5474
- PhraseModel_5 = +0
- PhraseModel_6 = -0.1818
- PassThrough = -0.193
+ Glue = -0.2722
+ WordPenalty = +0.05433
+ LanguageModel = +0.69948
+ LanguageModel_OOV = -0.2641
+ PhraseModel_0 = -1.4208
+ PhraseModel_1 = -1.563
+ PhraseModel_2 = -0.21051
+ PhraseModel_3 = -0.17764
+ PhraseModel_4 = -1.6583
+ PhraseModel_5 = +0.0794
+ PhraseModel_6 = +0.1528
+ PassThrough = -0.2367
---
- 1best avg score: 0.070229 (+0.070229)
- 1best avg model score: -44.01 (-44.01)
- avg # pairs: 1294
- avg # rank err: 878.67
- avg # margin viol: 350.67
- k-best loss imp: 100%
- non0 feature count: 11
+ 1best avg score: 0.071329 (+0.071329)
+ 1best avg model score: -41.362
+ avg # pairs: 1862.3
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 11.487
-(time 0.28 min, 5.7 s/S)
-
-Writing weights file to 'work/weights.1.0' ...
-done
+ avg f count: 11.847
+(time 0.28 min, 5 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.070229].
+Best iteration: 1 [GOLD = 0.071329].
This took 0.28333 min.
diff --git a/training/dtrain/examples/parallelized/work/out.1.1 b/training/dtrain/examples/parallelized/work/out.1.1
index 9346fc82..79ac35dc 100644
--- a/training/dtrain/examples/parallelized/work/out.1.1
+++ b/training/dtrain/examples/parallelized/work/out.1.1
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 3557309480
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.1.0.in'
output 'work/weights.1.1'
weights in 'work/weights.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.26425
- WordPenalty = +0.047881
- LanguageModel = +0.78496
- LanguageModel_OOV = -0.49307
- PhraseModel_0 = -0.58703
- PhraseModel_1 = -0.33425
- PhraseModel_2 = +0.20834
- PhraseModel_3 = -0.043346
- PhraseModel_4 = -0.60761
- PhraseModel_5 = +0.123
- PhraseModel_6 = -0.05415
- PassThrough = -0.42167
+ Glue = -0.20488
+ WordPenalty = -0.0091745
+ LanguageModel = +0.79433
+ LanguageModel_OOV = -0.4309
+ PhraseModel_0 = -0.56242
+ PhraseModel_1 = +0.85363
+ PhraseModel_2 = +1.3458
+ PhraseModel_3 = -0.13095
+ PhraseModel_4 = -0.94762
+ PhraseModel_5 = +0.02435
+ PhraseModel_6 = -0.16003
+ PassThrough = -0.46105
---
- 1best avg score: 0.085952 (+0.085952)
- 1best avg model score: -45.175 (-45.175)
- avg # pairs: 1180.7
- avg # rank err: 668.33
- avg # margin viol: 512.33
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.13017 (+0.13017)
+ 1best avg model score: 14.53
+ avg # pairs: 1968
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 12
-(time 0.27 min, 5.3 s/S)
-
-Writing weights file to 'work/weights.1.1' ...
-done
+ avg f count: 11
+(time 0.33 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.085952].
-This took 0.26667 min.
+Best iteration: 1 [GOLD = 0.13017].
+This took 0.33333 min.
diff --git a/training/dtrain/examples/parallelized/work/out.1.2 b/training/dtrain/examples/parallelized/work/out.1.2
index 08f07a75..8c4f8b03 100644
--- a/training/dtrain/examples/parallelized/work/out.1.2
+++ b/training/dtrain/examples/parallelized/work/out.1.2
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 56743915
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.1.0.in'
output 'work/weights.1.2'
weights in 'work/weights.1'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.23608
- WordPenalty = +0.10931
- LanguageModel = +0.81339
- LanguageModel_OOV = -0.33238
- PhraseModel_0 = -0.53685
- PhraseModel_1 = -0.049658
- PhraseModel_2 = +0.40277
- PhraseModel_3 = +0.14601
- PhraseModel_4 = -0.72851
- PhraseModel_5 = +0.03475
- PhraseModel_6 = -0.27192
- PassThrough = -0.34763
+ Glue = -0.49853
+ WordPenalty = +0.07636
+ LanguageModel = +1.3183
+ LanguageModel_OOV = -0.60902
+ PhraseModel_0 = -0.22481
+ PhraseModel_1 = +0.86369
+ PhraseModel_2 = +1.0747
+ PhraseModel_3 = +0.18002
+ PhraseModel_4 = -0.84661
+ PhraseModel_5 = +0.02435
+ PhraseModel_6 = +0.11247
+ PassThrough = -0.63918
---
- 1best avg score: 0.10073 (+0.10073)
- 1best avg model score: -38.422 (-38.422)
- avg # pairs: 1505.3
- avg # rank err: 777
- avg # margin viol: 691.67
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.15478 (+0.15478)
+ 1best avg model score: -7.2154
+ avg # pairs: 1776
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 12
-(time 0.35 min, 7 s/S)
-
-Writing weights file to 'work/weights.1.2' ...
-done
+ avg f count: 11.327
+(time 0.27 min, 5 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.10073].
-This took 0.35 min.
+Best iteration: 1 [GOLD = 0.15478].
+This took 0.26667 min.
diff --git a/training/dtrain/examples/parallelized/work/out.2.0 b/training/dtrain/examples/parallelized/work/out.2.0
index 25ef6d4e..07c85963 100644
--- a/training/dtrain/examples/parallelized/work/out.2.0
+++ b/training/dtrain/examples/parallelized/work/out.2.0
@@ -1,65 +1,43 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 2662215673
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.2.0.in'
output 'work/weights.2.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.1259
- WordPenalty = +0.048294
- LanguageModel = +0.36254
- LanguageModel_OOV = -0.1228
- PhraseModel_0 = +0.26357
- PhraseModel_1 = +0.24793
- PhraseModel_2 = +0.0063763
- PhraseModel_3 = -0.18966
- PhraseModel_4 = -0.226
+ Glue = -0.2109
+ WordPenalty = +0.14922
+ LanguageModel = +0.79686
+ LanguageModel_OOV = -0.6627
+ PhraseModel_0 = +0.37999
+ PhraseModel_1 = +0.69213
+ PhraseModel_2 = +0.3422
+ PhraseModel_3 = +1.1426
+ PhraseModel_4 = -0.55413
PhraseModel_5 = +0
- PhraseModel_6 = +0.0743
- PassThrough = -0.1335
+ PhraseModel_6 = +0.0676
+ PassThrough = -0.6343
---
- 1best avg score: 0.072836 (+0.072836)
- 1best avg model score: -0.56296 (-0.56296)
- avg # pairs: 1094.7
- avg # rank err: 658
- avg # margin viol: 436.67
- k-best loss imp: 100%
- non0 feature count: 11
+ 1best avg score: 0.072374 (+0.072374)
+ 1best avg model score: -27.384
+ avg # pairs: 2582
+ non-0 feature count: 11
avg list sz: 100
- avg f count: 10.813
-(time 0.13 min, 2.7 s/S)
-
-Writing weights file to 'work/weights.2.0' ...
-done
+ avg f count: 11.54
+(time 0.32 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.072836].
-This took 0.13333 min.
+Best iteration: 1 [GOLD = 0.072374].
+This took 0.31667 min.
diff --git a/training/dtrain/examples/parallelized/work/out.2.1 b/training/dtrain/examples/parallelized/work/out.2.1
index 8e4efde9..c54bb1b1 100644
--- a/training/dtrain/examples/parallelized/work/out.2.1
+++ b/training/dtrain/examples/parallelized/work/out.2.1
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 3092904479
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.2.0.in'
output 'work/weights.2.1'
weights in 'work/weights.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.10385
- WordPenalty = +0.038717
- LanguageModel = +0.49413
- LanguageModel_OOV = -0.24887
- PhraseModel_0 = -0.32102
- PhraseModel_1 = +0.34413
- PhraseModel_2 = +0.62366
- PhraseModel_3 = -0.49337
- PhraseModel_4 = -0.77005
- PhraseModel_5 = +0.007
- PhraseModel_6 = -0.05055
- PassThrough = -0.23928
+ Glue = -0.76608
+ WordPenalty = +0.15938
+ LanguageModel = +1.5897
+ LanguageModel_OOV = -0.521
+ PhraseModel_0 = -0.58348
+ PhraseModel_1 = +0.29828
+ PhraseModel_2 = +0.78493
+ PhraseModel_3 = +0.083222
+ PhraseModel_4 = -0.93843
+ PhraseModel_5 = +0.02435
+ PhraseModel_6 = -0.27382
+ PassThrough = -0.55115
---
- 1best avg score: 0.10245 (+0.10245)
- 1best avg model score: -20.384 (-20.384)
- avg # pairs: 1741.7
- avg # rank err: 953.67
- avg # margin viol: 585.33
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.12881 (+0.12881)
+ 1best avg model score: -9.6731
+ avg # pairs: 2020.3
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 11.977
-(time 0.12 min, 2.3 s/S)
-
-Writing weights file to 'work/weights.2.1' ...
-done
+ avg f count: 12
+(time 0.32 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.10245].
-This took 0.11667 min.
+Best iteration: 1 [GOLD = 0.12881].
+This took 0.31667 min.
diff --git a/training/dtrain/examples/parallelized/work/out.2.2 b/training/dtrain/examples/parallelized/work/out.2.2
index e0ca2110..f5d6229f 100644
--- a/training/dtrain/examples/parallelized/work/out.2.2
+++ b/training/dtrain/examples/parallelized/work/out.2.2
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 2803362953
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.2.0.in'
output 'work/weights.2.2'
weights in 'work/weights.1'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 3
+ .... 3
WEIGHTS
- Glue = -0.32907
- WordPenalty = +0.049596
- LanguageModel = +0.33496
- LanguageModel_OOV = -0.44357
- PhraseModel_0 = -0.3068
- PhraseModel_1 = +0.59376
- PhraseModel_2 = +0.86416
- PhraseModel_3 = -0.21072
- PhraseModel_4 = -0.65734
- PhraseModel_5 = +0.03475
- PhraseModel_6 = -0.10653
- PassThrough = -0.46082
+ Glue = -0.90863
+ WordPenalty = +0.10819
+ LanguageModel = +0.5239
+ LanguageModel_OOV = -0.41623
+ PhraseModel_0 = -0.86868
+ PhraseModel_1 = +0.40784
+ PhraseModel_2 = +1.1793
+ PhraseModel_3 = -0.24698
+ PhraseModel_4 = -1.2353
+ PhraseModel_5 = +0.03375
+ PhraseModel_6 = -0.17883
+ PassThrough = -0.44638
---
- 1best avg score: 0.25055 (+0.25055)
- 1best avg model score: -1.4459 (-1.4459)
- avg # pairs: 1689
- avg # rank err: 755.67
- avg # margin viol: 829.33
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.12788 (+0.12788)
+ 1best avg model score: 41.302
+ avg # pairs: 2246.3
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 10.53
-(time 0.13 min, 2.7 s/S)
-
-Writing weights file to 'work/weights.2.2' ...
-done
+ avg f count: 10.98
+(time 0.35 min, 7 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.25055].
-This took 0.13333 min.
+Best iteration: 1 [GOLD = 0.12788].
+This took 0.35 min.
diff --git a/training/dtrain/examples/parallelized/work/out.3.0 b/training/dtrain/examples/parallelized/work/out.3.0
index 3c074f04..fa499523 100644
--- a/training/dtrain/examples/parallelized/work/out.3.0
+++ b/training/dtrain/examples/parallelized/work/out.3.0
@@ -1,65 +1,43 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 316107185
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.3.0.in'
output 'work/weights.3.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 1
+ .. 1
WEIGHTS
- Glue = +0.046
- WordPenalty = +0.17328
- LanguageModel = +1.1667
- LanguageModel_OOV = +0.066
- PhraseModel_0 = -1.1694
- PhraseModel_1 = -0.9883
- PhraseModel_2 = +0.036205
- PhraseModel_3 = -0.77387
- PhraseModel_4 = -1.5019
- PhraseModel_5 = +0.024
- PhraseModel_6 = -0.514
- PassThrough = +0.031
+ Glue = -0.09
+ WordPenalty = +0.32442
+ LanguageModel = +2.5769
+ LanguageModel_OOV = -0.009
+ PhraseModel_0 = -0.58972
+ PhraseModel_1 = +0.063691
+ PhraseModel_2 = +0.5366
+ PhraseModel_3 = +0.12867
+ PhraseModel_4 = -1.9801
+ PhraseModel_5 = +0.018
+ PhraseModel_6 = -0.486
+ PassThrough = -0.09
---
- 1best avg score: 0.032916 (+0.032916)
- 1best avg model score: 0 (+0)
- avg # pairs: 900
- avg # rank err: 900
- avg # margin viol: 0
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.034204 (+0.034204)
+ 1best avg model score: 0
+ avg # pairs: 1700
+ non-0 feature count: 12
avg list sz: 100
- avg f count: 11.72
-(time 0.23 min, 14 s/S)
-
-Writing weights file to 'work/weights.3.0' ...
-done
+ avg f count: 10.8
+(time 0.1 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.032916].
-This took 0.23333 min.
+Best iteration: 1 [GOLD = 0.034204].
+This took 0.1 min.
diff --git a/training/dtrain/examples/parallelized/work/out.3.1 b/training/dtrain/examples/parallelized/work/out.3.1
index 241d3455..c4b3aa3c 100644
--- a/training/dtrain/examples/parallelized/work/out.3.1
+++ b/training/dtrain/examples/parallelized/work/out.3.1
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 353677750
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.3.0.in'
output 'work/weights.3.1'
weights in 'work/weights.0'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 1
+ .. 1
WEIGHTS
- Glue = -0.08475
- WordPenalty = +0.11151
- LanguageModel = +1.0635
- LanguageModel_OOV = -0.11468
- PhraseModel_0 = -0.062922
- PhraseModel_1 = +0.0035552
- PhraseModel_2 = +0.039692
- PhraseModel_3 = +0.080265
- PhraseModel_4 = -0.57787
- PhraseModel_5 = +0.0174
- PhraseModel_6 = -0.17095
- PassThrough = -0.18248
+ Glue = +0.31832
+ WordPenalty = +0.11139
+ LanguageModel = +0.95438
+ LanguageModel_OOV = -0.0608
+ PhraseModel_0 = -0.98113
+ PhraseModel_1 = -0.090531
+ PhraseModel_2 = +0.79088
+ PhraseModel_3 = -0.57623
+ PhraseModel_4 = -1.4382
+ PhraseModel_5 = +0.02435
+ PhraseModel_6 = -0.10812
+ PassThrough = -0.09095
---
- 1best avg score: 0.16117 (+0.16117)
- 1best avg model score: -67.89 (-67.89)
- avg # pairs: 1411
- avg # rank err: 460
- avg # margin viol: 951
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.084989 (+0.084989)
+ 1best avg model score: -52.323
+ avg # pairs: 2487
+ non-0 feature count: 12
avg list sz: 100
avg f count: 12
-(time 0.22 min, 13 s/S)
-
-Writing weights file to 'work/weights.3.1' ...
-done
+(time 0.1 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.16117].
-This took 0.21667 min.
+Best iteration: 1 [GOLD = 0.084989].
+This took 0.1 min.
diff --git a/training/dtrain/examples/parallelized/work/out.3.2 b/training/dtrain/examples/parallelized/work/out.3.2
index b995daf5..eb27dac2 100644
--- a/training/dtrain/examples/parallelized/work/out.3.2
+++ b/training/dtrain/examples/parallelized/work/out.3.2
@@ -1,66 +1,44 @@
- cdec cfg 'cdec.ini'
Loading the LM will be faster if you build a binary file.
Reading ../standard/nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
-Seeding random number sequence to 3001145976
-
dtrain
Parameters:
k 100
N 4
T 1
- batch 0
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 0.0001
- gamma 0
- loss margin 1
- faster perceptron 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
+ error margin 1
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'work/shard.3.0.in'
output 'work/weights.3.2'
weights in 'work/weights.1'
-(a dot represents 10 inputs)
+(a dot per input)
Iteration #1 of 1.
- 1
+ .. 1
WEIGHTS
- Glue = -0.13247
- WordPenalty = +0.053592
- LanguageModel = +0.72105
- LanguageModel_OOV = -0.30827
- PhraseModel_0 = -0.37053
- PhraseModel_1 = +0.17551
- PhraseModel_2 = +0.5
- PhraseModel_3 = -0.1459
- PhraseModel_4 = -0.59563
- PhraseModel_5 = +0.03475
- PhraseModel_6 = -0.11143
- PassThrough = -0.32553
+ Glue = -0.12993
+ WordPenalty = +0.13651
+ LanguageModel = +0.58946
+ LanguageModel_OOV = -0.48362
+ PhraseModel_0 = -0.81262
+ PhraseModel_1 = +0.44273
+ PhraseModel_2 = +1.1733
+ PhraseModel_3 = -0.1826
+ PhraseModel_4 = -1.2213
+ PhraseModel_5 = +0.02435
+ PhraseModel_6 = -0.18823
+ PassThrough = -0.51378
---
- 1best avg score: 0.12501 (+0.12501)
- 1best avg model score: -62.128 (-62.128)
- avg # pairs: 979
- avg # rank err: 539
- avg # margin viol: 440
- k-best loss imp: 100%
- non0 feature count: 12
+ 1best avg score: 0.12674 (+0.12674)
+ 1best avg model score: -7.2878
+ avg # pairs: 1769
+ non-0 feature count: 12
avg list sz: 100
avg f count: 12
-(time 0.22 min, 13 s/S)
-
-Writing weights file to 'work/weights.3.2' ...
-done
+(time 0.1 min, 6 s/S)
---
-Best iteration: 1 [SCORE 'stupid_bleu'=0.12501].
-This took 0.21667 min.
+Best iteration: 1 [GOLD = 0.12674].
+This took 0.1 min.
diff --git a/training/dtrain/examples/parallelized/work/shard.0.0.in b/training/dtrain/examples/parallelized/work/shard.0.0.in
index d1b48321..a0ef6f54 100644
--- a/training/dtrain/examples/parallelized/work/shard.0.0.in
+++ b/training/dtrain/examples/parallelized/work/shard.0.0.in
@@ -1,3 +1,3 @@
-<seg grammar="grammar/grammar.out.8.gz" id="8">der erste schritt , um mit der rassenfrage umzugehen ist , ursache und folgen rassistischer feindseligkeiten zu verstehen , auch dann , wenn das bedeutet , unangenehme tatsachen aufzudecken .</seg> ||| the first step to address racial politics is to understand the origin and consequences of racial animosity , even if it means uncovering unpleasant truths .
-<seg grammar="grammar/grammar.out.5.gz" id="5">die großen parteien der rechten und der linken mitte haben sich dem problem gestellt , in dem sie den kopf in den sand gesteckt und allen aussichten zuwider gehofft haben , es möge bald verschwinden .</seg> ||| mainstream parties of the center left and center right have confronted this prospect by hiding their heads in the ground , hoping against hope that the problem will disappear .
+<seg grammar="grammar/grammar.out.0.gz" id="0">europas nach rassen geteiltes haus</seg> ||| europe 's divided racial house
+<seg grammar="grammar/grammar.out.1.gz" id="1">ein gemeinsames merkmal aller extremen rechten in europa ist ihr rassismus und die tatsache , daß sie das einwanderungsproblem als politischen hebel benutzen .</seg> ||| a common feature of europe 's extreme right is its racism and use of the immigration issue as a political wedge .
<seg grammar="grammar/grammar.out.2.gz" id="2">der lega nord in italien , der vlaams block in den niederlanden , die anhänger von le pens nationaler front in frankreich , sind beispiele für parteien oder bewegungen , die sich um das gemeinsame thema : ablehnung der zuwanderung gebildet haben und um forderung nach einer vereinfachten politik , um sie zu regeln .</seg> ||| the lega nord in italy , the vlaams blok in the netherlands , the supporters of le pen 's national front in france , are all examples of parties or movements formed on the common theme of aversion to immigrants and promotion of simplistic policies to control them .
diff --git a/training/dtrain/examples/parallelized/work/shard.1.0.in b/training/dtrain/examples/parallelized/work/shard.1.0.in
index a63f05bd..05f0273b 100644
--- a/training/dtrain/examples/parallelized/work/shard.1.0.in
+++ b/training/dtrain/examples/parallelized/work/shard.1.0.in
@@ -1,3 +1,3 @@
-<seg grammar="grammar/grammar.out.4.gz" id="4">eine alternde einheimische bevölkerung und immer offenere grenzen vermehren die rassistische zersplitterung in den europäischen ländern .</seg> ||| an aging population at home and ever more open borders imply increasing racial fragmentation in european countries .
-<seg grammar="grammar/grammar.out.9.gz" id="9">genau das haben in den usa eine große anzahl an forschungsvorhaben in wirtschaft , soziologie , psychologie und politikwissenschaft geleistet . diese forschungen zeigten , daß menschen unterschiedlicher rasse einander deutlich weniger vertrauen .</seg> ||| this is precisely what a large amount of research in economics , sociology , psychology and political science has done for the us .
<seg grammar="grammar/grammar.out.3.gz" id="3">während individuen wie jörg haidar und jean @-@ marie le pen kommen und ( leider nicht zu bald ) wieder gehen mögen , wird die rassenfrage aus der europäischer politik nicht so bald verschwinden .</seg> ||| while individuals like jorg haidar and jean @-@ marie le pen may come and ( never to soon ) go , the race question will not disappear from european politics anytime soon .
+<seg grammar="grammar/grammar.out.4.gz" id="4">eine alternde einheimische bevölkerung und immer offenere grenzen vermehren die rassistische zersplitterung in den europäischen ländern .</seg> ||| an aging population at home and ever more open borders imply increasing racial fragmentation in european countries .
+<seg grammar="grammar/grammar.out.5.gz" id="5">die großen parteien der rechten und der linken mitte haben sich dem problem gestellt , in dem sie den kopf in den sand gesteckt und allen aussichten zuwider gehofft haben , es möge bald verschwinden .</seg> ||| mainstream parties of the center left and center right have confronted this prospect by hiding their heads in the ground , hoping against hope that the problem will disappear .
diff --git a/training/dtrain/examples/parallelized/work/shard.2.0.in b/training/dtrain/examples/parallelized/work/shard.2.0.in
index fe542b40..0528d357 100644
--- a/training/dtrain/examples/parallelized/work/shard.2.0.in
+++ b/training/dtrain/examples/parallelized/work/shard.2.0.in
@@ -1,3 +1,3 @@
-<seg grammar="grammar/grammar.out.1.gz" id="1">ein gemeinsames merkmal aller extremen rechten in europa ist ihr rassismus und die tatsache , daß sie das einwanderungsproblem als politischen hebel benutzen .</seg> ||| a common feature of europe 's extreme right is its racism and use of the immigration issue as a political wedge .
-<seg grammar="grammar/grammar.out.0.gz" id="0">europas nach rassen geteiltes haus</seg> ||| europe 's divided racial house
<seg grammar="grammar/grammar.out.6.gz" id="6">das aber wird es nicht , wie die geschichte des rassismus in amerika deutlich zeigt .</seg> ||| it will not , as america 's racial history clearly shows .
+<seg grammar="grammar/grammar.out.7.gz" id="7">die beziehungen zwischen den rassen standen in den usa über jahrzehnte - und tun das noch heute - im zentrum der politischen debatte . das ging so weit , daß rassentrennung genauso wichtig wie das einkommen wurde , - wenn nicht sogar noch wichtiger - um politische zuneigungen und einstellungen zu bestimmen .</seg> ||| race relations in the us have been for decades - and remain - at the center of political debate , to the point that racial cleavages are as important as income , if not more , as determinants of political preferences and attitudes .
+<seg grammar="grammar/grammar.out.8.gz" id="8">der erste schritt , um mit der rassenfrage umzugehen ist , ursache und folgen rassistischer feindseligkeiten zu verstehen , auch dann , wenn das bedeutet , unangenehme tatsachen aufzudecken .</seg> ||| the first step to address racial politics is to understand the origin and consequences of racial animosity , even if it means uncovering unpleasant truths .
diff --git a/training/dtrain/examples/parallelized/work/shard.3.0.in b/training/dtrain/examples/parallelized/work/shard.3.0.in
index 4a8fa5b1..f7cbb3e3 100644
--- a/training/dtrain/examples/parallelized/work/shard.3.0.in
+++ b/training/dtrain/examples/parallelized/work/shard.3.0.in
@@ -1 +1 @@
-<seg grammar="grammar/grammar.out.7.gz" id="7">die beziehungen zwischen den rassen standen in den usa über jahrzehnte - und tun das noch heute - im zentrum der politischen debatte . das ging so weit , daß rassentrennung genauso wichtig wie das einkommen wurde , - wenn nicht sogar noch wichtiger - um politische zuneigungen und einstellungen zu bestimmen .</seg> ||| race relations in the us have been for decades - and remain - at the center of political debate , to the point that racial cleavages are as important as income , if not more , as determinants of political preferences and attitudes .
+<seg grammar="grammar/grammar.out.9.gz" id="9">genau das haben in den usa eine große anzahl an forschungsvorhaben in wirtschaft , soziologie , psychologie und politikwissenschaft geleistet . diese forschungen zeigten , daß menschen unterschiedlicher rasse einander deutlich weniger vertrauen .</seg> ||| this is precisely what a large amount of research in economics , sociology , psychology and political science has done for the us .
diff --git a/training/dtrain/examples/parallelized/work/weights.0 b/training/dtrain/examples/parallelized/work/weights.0
index c560fdbd..816269cd 100644
--- a/training/dtrain/examples/parallelized/work/weights.0
+++ b/training/dtrain/examples/parallelized/work/weights.0
@@ -1,12 +1,12 @@
-PhraseModel_4 -0.6990170657294328
-LanguageModel 0.891784887346263
-PhraseModel_0 -0.2107507586515428
-PhraseModel_1 -0.15442709655871997
-PhraseModel_3 -0.07262514338204715
-PhraseModel_6 -0.10965000000000148
-Glue -0.03644999999999783
-WordPenalty 0.13204723722268177
-PassThrough -0.09437500000000089
-LanguageModel_OOV -0.036775000000000564
-PhraseModel_2 0.025521702385571707
-PhraseModel_5 0.006999999999999977
+LanguageModel 1.200704259340465
+PhraseModel_4 -1.2434381298299035
+PhraseModel_1 0.050697726409824076
+PhraseModel_0 -0.516923312932941
+PhraseModel_2 0.5051987092783867
+PhraseModel_3 0.20955092377784057
+PassThrough -0.32285
+LanguageModel_OOV -0.29269999999999996
+PhraseModel_6 -0.158425
+Glue -0.05817500000000002
+WordPenalty 0.12758486142112804
+PhraseModel_5 0.02435
diff --git a/training/dtrain/examples/parallelized/work/weights.0.0 b/training/dtrain/examples/parallelized/work/weights.0.0
index 91eedc7b..be386c62 100644
--- a/training/dtrain/examples/parallelized/work/weights.0.0
+++ b/training/dtrain/examples/parallelized/work/weights.0.0
@@ -1,12 +1,11 @@
-PassThrough -0.082000000000001058
-Glue 0.25700000000000267
-LanguageModel_OOV -0.046000000000000034
-LanguageModel 0.67341721152744249
-PhraseModel_6 0.18290000000000028
-PhraseModel_5 0.0039999999999999975
-PhraseModel_4 0.47916377173928498
-PhraseModel_3 0.65577926367715722
-PhraseModel_2 0.00060731048591637909
-PhraseModel_0 0.25329462707903372
-WordPenalty 0.026926257878001431
-PhraseModel_1 0.20035945197369062
+WordPenalty -0.017632355965271129
+LanguageModel 0.72957628464102753
+LanguageModel_OOV -0.23499999999999999
+PhraseModel_0 -0.43720953659541578
+PhraseModel_1 1.0100170838129212
+PhraseModel_2 1.3524984123857073
+PhraseModel_3 -0.25541132249775761
+PhraseModel_4 -0.78115161368856911
+PhraseModel_6 -0.36810000000000004
+Glue 0.34040000000000004
+PassThrough -0.33040000000000003
diff --git a/training/dtrain/examples/parallelized/work/weights.0.1 b/training/dtrain/examples/parallelized/work/weights.0.1
index 6fcc9999..d4c77d07 100644
--- a/training/dtrain/examples/parallelized/work/weights.0.1
+++ b/training/dtrain/examples/parallelized/work/weights.0.1
@@ -1,12 +1,12 @@
-PassThrough -0.2346750000000028
-Glue -0.17904999999999763
-WordPenalty 0.062125825636256168
-LanguageModel 0.66824625053667575
-LanguageModel_OOV -0.15247500000000355
-PhraseModel_0 -0.5581144363944085
-PhraseModel_1 0.12740874153205478
-PhraseModel_2 0.6038779278708799
-PhraseModel_3 -0.44463820299544454
-PhraseModel_4 -0.63136538282212662
-PhraseModel_5 -0.0084000000000000324
-PhraseModel_6 -0.20164999999999911
+WordPenalty 0.12966947493426365
+LanguageModel 0.3989224621154368
+LanguageModel_OOV -0.63139999999999996
+PhraseModel_0 -0.63991953012355962
+PhraseModel_1 0.74197897612368646
+PhraseModel_2 1.3096163833051435
+PhraseModel_3 -0.12160001974680773
+PhraseModel_4 -1.2274031286515816
+PhraseModel_5 0.02435
+PhraseModel_6 -0.210925
+Glue -0.40907500000000002
+PassThrough -0.66155000000000008
diff --git a/training/dtrain/examples/parallelized/work/weights.0.2 b/training/dtrain/examples/parallelized/work/weights.0.2
index 5668915d..8ce1449b 100644
--- a/training/dtrain/examples/parallelized/work/weights.0.2
+++ b/training/dtrain/examples/parallelized/work/weights.0.2
@@ -1,12 +1,12 @@
-PassThrough -0.38122499999999337
-Glue -0.019274999999998679
-WordPenalty 0.022192448025253487
-LanguageModel 0.4068780855136106
-LanguageModel_OOV -0.363974999999992
-PhraseModel_0 -0.36273429313029715
-PhraseModel_1 0.56431752511029298
-PhraseModel_2 0.85638010019687694
-PhraseModel_3 -0.20222345248738063
-PhraseModel_4 -0.48295466434310252
-PhraseModel_5 0.031450000000000339
-PhraseModel_6 -0.26092499999998625
+WordPenalty 0.10319922626226019
+LanguageModel 0.6647396869692952
+LanguageModel_OOV -0.622525
+PhraseModel_0 -0.59993441316076157
+PhraseModel_1 0.78991513935858193
+PhraseModel_2 1.3148638774685031
+PhraseModel_3 0.2143393571820455
+PhraseModel_4 -1.0173894637028262
+PhraseModel_5 0.02435
+PhraseModel_6 -0.18452499999999999
+Glue -0.44422499999999998
+PassThrough -0.65267500000000012
diff --git a/training/dtrain/examples/parallelized/work/weights.1 b/training/dtrain/examples/parallelized/work/weights.1
index f52e07b8..2a00be2e 100644
--- a/training/dtrain/examples/parallelized/work/weights.1
+++ b/training/dtrain/examples/parallelized/work/weights.1
@@ -1,12 +1,12 @@
-LanguageModel 0.7527067666152598
-PhraseModel_4 -0.6467221787583058
-PhraseModel_2 0.36889175522051015
-PhraseModel_0 -0.38227173053779245
-PhraseModel_3 -0.2252732111174934
-LanguageModel_OOV -0.25227499999999975
-PassThrough -0.2695250000000011
-PhraseModel_1 0.03521067244127414
-Glue -0.1579749999999981
-PhraseModel_6 -0.11932500000000047
-WordPenalty 0.0650573133891042
-PhraseModel_5 0.03475000000000043
+PhraseModel_4 -1.1379250444170055
+PhraseModel_2 1.0578050661336098
+LanguageModel 0.9343385461706668
+PhraseModel_0 -0.6917392152965985
+PhraseModel_1 0.4508371141128957
+PassThrough -0.4411750000000001
+Glue -0.265425
+LanguageModel_OOV -0.411025
+PhraseModel_3 -0.186390082624459
+PhraseModel_6 -0.188225
+WordPenalty 0.09781397468665984
+PhraseModel_5 0.02435
diff --git a/training/dtrain/examples/parallelized/work/weights.1.0 b/training/dtrain/examples/parallelized/work/weights.1.0
index 31e08d81..cdcf959e 100644
--- a/training/dtrain/examples/parallelized/work/weights.1.0
+++ b/training/dtrain/examples/parallelized/work/weights.1.0
@@ -1,11 +1,12 @@
-LanguageModel_OOV -0.044300000000000235
-PassThrough -0.19300000000000087
-PhraseModel_6 -0.18180000000000701
-LanguageModel 1.3644969337716422
-PhraseModel_3 0.017250706134911725
-PhraseModel_4 -1.5473728273858063
-Glue -0.32289999999999447
-PhraseModel_1 -0.077697953502182365
-WordPenalty 0.27968564634568688
-PhraseModel_0 -0.19048660891012237
-PhraseModel_2 0.05889844333199834
+WordPenalty 0.05433023968609621
+LanguageModel 0.69947965605855011
+LanguageModel_OOV -0.2641
+PhraseModel_0 -1.4207505705360111
+PhraseModel_1 -1.563047680441811
+PhraseModel_2 -0.21050528366541305
+PhraseModel_3 -0.17764037275860439
+PhraseModel_4 -1.6583462458159566
+PhraseModel_5 0.079399999999999998
+PhraseModel_6 0.15280000000000002
+Glue -0.27220000000000005
+PassThrough -0.23670000000000002
diff --git a/training/dtrain/examples/parallelized/work/weights.1.1 b/training/dtrain/examples/parallelized/work/weights.1.1
index 544ff462..c1bb2cf0 100644
--- a/training/dtrain/examples/parallelized/work/weights.1.1
+++ b/training/dtrain/examples/parallelized/work/weights.1.1
@@ -1,12 +1,12 @@
-PassThrough -0.42167499999999858
-Glue -0.26424999999999721
-WordPenalty 0.04788096662983269
-LanguageModel 0.78495517342352483
-LanguageModel_OOV -0.49307499999999477
-PhraseModel_0 -0.58703462849498356
-PhraseModel_1 -0.33425278954714266
-PhraseModel_2 0.20834221229630179
-PhraseModel_3 -0.043345645640208569
-PhraseModel_4 -0.60760531115816907
-PhraseModel_5 0.12300000000000186
-PhraseModel_6 -0.054150000000001031
+WordPenalty -0.0091744709302067785
+LanguageModel 0.79433413663506514
+LanguageModel_OOV -0.43090000000000001
+PhraseModel_0 -0.56242499947237046
+PhraseModel_1 0.85362516703032698
+PhraseModel_2 1.3457900890481096
+PhraseModel_3 -0.13095079554478939
+PhraseModel_4 -0.94761908497413061
+PhraseModel_5 0.02435
+PhraseModel_6 -0.160025
+Glue -0.20487500000000003
+PassThrough -0.46105000000000007
diff --git a/training/dtrain/examples/parallelized/work/weights.1.2 b/training/dtrain/examples/parallelized/work/weights.1.2
index ac3284b9..c9598a04 100644
--- a/training/dtrain/examples/parallelized/work/weights.1.2
+++ b/training/dtrain/examples/parallelized/work/weights.1.2
@@ -1,12 +1,12 @@
-PassThrough -0.34762500000000224
-Glue -0.23607500000000026
-WordPenalty 0.10931192109504413
-LanguageModel 0.81339027211983694
-LanguageModel_OOV -0.33237500000000098
-PhraseModel_0 -0.53685104648974269
-PhraseModel_1 -0.049657790506137042
-PhraseModel_2 0.40277066454544108
-PhraseModel_3 0.14600791389785803
-PhraseModel_4 -0.72850673041349101
-PhraseModel_5 0.034750000000000433
-PhraseModel_6 -0.27192499999999448
+WordPenalty 0.076359827280638559
+LanguageModel 1.3183380272921175
+LanguageModel_OOV -0.60902499999999993
+PhraseModel_0 -0.2248075206657828
+PhraseModel_1 0.86368802571834491
+PhraseModel_2 1.0746702462261808
+PhraseModel_3 0.18002263643876637
+PhraseModel_4 -0.84660750337519441
+PhraseModel_5 0.02435
+PhraseModel_6 0.11247499999999999
+Glue -0.49852500000000005
+PassThrough -0.63917500000000005
diff --git a/training/dtrain/examples/parallelized/work/weights.2 b/training/dtrain/examples/parallelized/work/weights.2
index dedaf165..310973ec 100644
--- a/training/dtrain/examples/parallelized/work/weights.2
+++ b/training/dtrain/examples/parallelized/work/weights.2
@@ -1,12 +1,12 @@
-PhraseModel_2 0.6558266927225778
-PhraseModel_4 -0.6161090299356294
-LanguageModel 0.5690697644415413
-PhraseModel_1 0.32098232482479416
-PhraseModel_0 -0.39422813904895143
-PassThrough -0.37879999999999764
-LanguageModel_OOV -0.3620499999999963
-Glue -0.1792249999999967
-PhraseModel_6 -0.18769999999999526
-PhraseModel_3 -0.10321074877850786
-WordPenalty 0.05867318450512617
-PhraseModel_5 0.03392500000000041
+PhraseModel_2 1.185520780812669
+PhraseModel_4 -1.0801541070647134
+LanguageModel 0.7741099486587568
+PhraseModel_0 -0.6265095873268189
+PhraseModel_1 0.6260421233840029
+PassThrough -0.5630000000000002
+Glue -0.495325
+LanguageModel_OOV -0.53285
+PhraseModel_3 -0.008805626854390465
+PhraseModel_6 -0.10977500000000001
+WordPenalty 0.1060655698428214
+PhraseModel_5 0.026699999999999998
diff --git a/training/dtrain/examples/parallelized/work/weights.2.0 b/training/dtrain/examples/parallelized/work/weights.2.0
index f7ece54d..3e87fed4 100644
--- a/training/dtrain/examples/parallelized/work/weights.2.0
+++ b/training/dtrain/examples/parallelized/work/weights.2.0
@@ -1,11 +1,11 @@
-LanguageModel_OOV -0.12280000000000209
-PassThrough -0.13350000000000165
-Glue -0.1259000000000001
-PhraseModel_1 0.24792740418949952
-WordPenalty 0.048293546387642321
-PhraseModel_0 0.26356693580129958
-PhraseModel_2 0.0063762787517740458
-PhraseModel_3 -0.18966358382769741
-PhraseModel_4 -0.22599681869670471
-PhraseModel_6 0.074299999999999047
-LanguageModel 0.3625416478537038
+WordPenalty 0.14922358398195767
+LanguageModel 0.79685677298009394
+LanguageModel_OOV -0.66270000000000007
+PhraseModel_0 0.37998874905310187
+PhraseModel_1 0.69213063228111271
+PhraseModel_2 0.34219807728516061
+PhraseModel_3 1.1425846772648622
+PhraseModel_4 -0.55412548521619742
+PhraseModel_6 0.067599999999999993
+Glue -0.21090000000000003
+PassThrough -0.63429999999999997
diff --git a/training/dtrain/examples/parallelized/work/weights.2.1 b/training/dtrain/examples/parallelized/work/weights.2.1
index 0946609d..d129dc49 100644
--- a/training/dtrain/examples/parallelized/work/weights.2.1
+++ b/training/dtrain/examples/parallelized/work/weights.2.1
@@ -1,12 +1,12 @@
-PassThrough -0.23927500000000015
-Glue -0.10384999999999919
-WordPenalty 0.038717353061671053
-LanguageModel 0.49412782572695274
-LanguageModel_OOV -0.24887499999999915
-PhraseModel_0 -0.32101572713801541
-PhraseModel_1 0.34413149733472631
-PhraseModel_2 0.62365535622061474
-PhraseModel_3 -0.49337445280658987
-PhraseModel_4 -0.77004673375347765
-PhraseModel_5 0.0069999999999999767
-PhraseModel_6 -0.05055000000000108
+WordPenalty 0.1593752174964457
+LanguageModel 1.5897162231676281
+LanguageModel_OOV -0.52100000000000002
+PhraseModel_0 -0.5834836741748588
+PhraseModel_1 0.29827543837280185
+PhraseModel_2 0.78493316593562568
+PhraseModel_3 0.083221832554333464
+PhraseModel_4 -0.93843312963279457
+PhraseModel_5 0.02435
+PhraseModel_6 -0.27382499999999999
+Glue -0.76607500000000006
+PassThrough -0.55115000000000003
diff --git a/training/dtrain/examples/parallelized/work/weights.2.2 b/training/dtrain/examples/parallelized/work/weights.2.2
index b766fc75..bcc83b44 100644
--- a/training/dtrain/examples/parallelized/work/weights.2.2
+++ b/training/dtrain/examples/parallelized/work/weights.2.2
@@ -1,12 +1,12 @@
-PassThrough -0.46082499999999499
-Glue -0.32907499999998979
-WordPenalty 0.049596429833348527
-LanguageModel 0.33496341201347335
-LanguageModel_OOV -0.44357499999999361
-PhraseModel_0 -0.30679883980783829
-PhraseModel_1 0.5937585900939707
-PhraseModel_2 0.86415970329021152
-PhraseModel_3 -0.21072279838022553
-PhraseModel_4 -0.65734339854224544
-PhraseModel_5 0.034750000000000433
-PhraseModel_6 -0.10652500000000011
+WordPenalty 0.10819361280414735
+LanguageModel 0.52389743342585859
+LanguageModel_OOV -0.41622500000000001
+PhraseModel_0 -0.86867995703334211
+PhraseModel_1 0.40783818771767943
+PhraseModel_2 1.1792706530114188
+PhraseModel_3 -0.2469805689928464
+PhraseModel_4 -1.2352895858909159
+PhraseModel_5 0.033750000000000002
+PhraseModel_6 -0.17882500000000001
+Glue -0.90862500000000002
+PassThrough -0.44637500000000013
diff --git a/training/dtrain/examples/parallelized/work/weights.3.0 b/training/dtrain/examples/parallelized/work/weights.3.0
index 403ffbb3..e3586048 100644
--- a/training/dtrain/examples/parallelized/work/weights.3.0
+++ b/training/dtrain/examples/parallelized/work/weights.3.0
@@ -1,12 +1,12 @@
-PhraseModel_4 -1.501862388574505
-PhraseModel_3 -0.77386695951256013
-PhraseModel_6 -0.51399999999999824
-PhraseModel_5 0.02399999999999991
-LanguageModel 1.1666837562322641
-PhraseModel_2 0.036204776972598059
-PassThrough 0.030999999999999975
-Glue 0.046000000000000582
-PhraseModel_1 -0.98829728889588764
-WordPenalty 0.1732834982793964
-PhraseModel_0 -1.1693779885763822
-LanguageModel_OOV 0.066000000000000086
+WordPenalty 0.32441797798172944
+LanguageModel 2.5769043236821889
+LanguageModel_OOV -0.0090000000000000011
+PhraseModel_0 -0.58972189365343919
+PhraseModel_1 0.063690869987073351
+PhraseModel_2 0.53660363110809217
+PhraseModel_3 0.12867071310286207
+PhraseModel_4 -1.9801291745988916
+PhraseModel_5 0.018000000000000002
+PhraseModel_6 -0.48600000000000004
+Glue -0.090000000000000011
+PassThrough -0.090000000000000011
diff --git a/training/dtrain/examples/parallelized/work/weights.3.1 b/training/dtrain/examples/parallelized/work/weights.3.1
index c171d586..b27687d3 100644
--- a/training/dtrain/examples/parallelized/work/weights.3.1
+++ b/training/dtrain/examples/parallelized/work/weights.3.1
@@ -1,12 +1,12 @@
-PassThrough -0.18247500000000313
-Glue -0.084749999999998368
-WordPenalty 0.11150510822865688
-LanguageModel 1.063497816773886
-LanguageModel_OOV -0.1146750000000015
-PhraseModel_0 -0.062922130123762257
-PhraseModel_1 0.0035552404454581212
-PhraseModel_2 0.039691524494244249
-PhraseModel_3 0.080265456972269417
-PhraseModel_4 -0.57787128729945014
-PhraseModel_5 0.017399999999999922
-PhraseModel_6 -0.17095000000000066
+WordPenalty 0.11138567724613679
+LanguageModel 0.95438136276453733
+LanguageModel_OOV -0.060799999999999937
+PhraseModel_0 -0.98112865741560529
+PhraseModel_1 -0.090531125075232435
+PhraseModel_2 0.79088062624556033
+PhraseModel_3 -0.57623134776057228
+PhraseModel_4 -1.4382448344095151
+PhraseModel_5 0.02435
+PhraseModel_6 -0.108125
+Glue 0.31832499999999997
+PassThrough -0.090950000000000003
diff --git a/training/dtrain/examples/parallelized/work/weights.3.2 b/training/dtrain/examples/parallelized/work/weights.3.2
index 3ff0411d..ccb591a2 100644
--- a/training/dtrain/examples/parallelized/work/weights.3.2
+++ b/training/dtrain/examples/parallelized/work/weights.3.2
@@ -1,12 +1,12 @@
-PassThrough -0.32552500000000006
-Glue -0.13247499999999815
-WordPenalty 0.053591939066858545
-LanguageModel 0.72104728811924446
-LanguageModel_OOV -0.30827499999999869
-PhraseModel_0 -0.37052837676792744
-PhraseModel_1 0.17551097460105014
-PhraseModel_2 0.49999630285778179
-PhraseModel_3 -0.14590465814428336
-PhraseModel_4 -0.59563132644367889
-PhraseModel_5 0.034750000000000433
-PhraseModel_6 -0.11142500000000025
+WordPenalty 0.13650961302423945
+LanguageModel 0.58946464694775647
+LanguageModel_OOV -0.48362499999999997
+PhraseModel_0 -0.81261645844738917
+PhraseModel_1 0.44272714074140529
+PhraseModel_2 1.1732783465445731
+PhraseModel_3 -0.18260393204552733
+PhraseModel_4 -1.2213298752899167
+PhraseModel_5 0.02435
+PhraseModel_6 -0.188225
+Glue -0.12992500000000001
+PassThrough -0.51377500000000009
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index a515db02..f2698007 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -1,27 +1,10 @@
-#input=./nc-wmt11.de.gz
-#refs=./nc-wmt11.en.gz
-bitext=./nc-wmt11.gz
+bitext=./nc-wmt11.gz # input bitext
output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
-select_weights=avg # output average (over epochs) weight vector
decoder_config=./cdec.ini # config for cdec
-# weights for these features will be printed on each iteration
+iterations=3 # run over input 3 times
+k=100 # use 100best lists
+N=4 # optimize (approx.) BLEU4
+learning_rate=0.1 # learning rate
+error_margin=1.0 # margin for margin perceptron
print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
-# newer version of the grammar extractor use different feature names:
-#print_weights= EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV
-stop_after=10 # stop epoch after 10 inputs
-# interesting stuff
-epochs=3 # run over input 3 times
-k=100 # use 100best lists
-N=4 # optimize (approx) BLEU4
-scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=0.1 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
-gamma=0 # use SVM reg
-sample_from=kbest # use kbest lists (as opposed to forest)
-filter=uniq # only unique entries in kbest (surface form)
-pair_sampling=XYX #
-hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
-pair_threshold=0 # minimum distance in BLEU (here: > 0)
-loss_margin=0 # update if correctly ranked, but within this margin
-repeat=1 # repeat training on a kbest list 1 times
-#batch=true # batch tuning, update after accumulating over all sentences and all kbest lists
diff --git a/training/dtrain/examples/toy/dtrain.ini b/training/dtrain/examples/toy/dtrain.ini
index 70c7331c..378224b8 100644
--- a/training/dtrain/examples/toy/dtrain.ini
+++ b/training/dtrain/examples/toy/dtrain.ini
@@ -1,12 +1,8 @@
decoder_config=cdec.ini
bitext=in
-output=-
-print_weights=logp shell_rule house_rule small_rule little_rule PassThrough PassThrough_1 PassThrough_2 PassThrough_3 PassThrough_4 PassThrough_5 PassThrough_6
+output=weights
k=4
N=4
-epochs=2
-scorer=bleu
-sample_from=kbest
-filter=uniq
-pair_sampling=all
+iterations=2
learning_rate=1
+print_weights=logp shell_rule house_rule small_rule little_rule PassThrough PassThrough_1 PassThrough_2 PassThrough_3 PassThrough_4 PassThrough_5 PassThrough_6
diff --git a/training/dtrain/examples/toy/expected-output b/training/dtrain/examples/toy/expected-output
index 3c3a5a18..8c758d00 100644
--- a/training/dtrain/examples/toy/expected-output
+++ b/training/dtrain/examples/toy/expected-output
@@ -1,40 +1,24 @@
-Warning: hi_lo only works with pair_sampling XYX.
- cdec cfg 'cdec.ini'
-Seeding random number sequence to 3644621239
-
dtrain
Parameters:
k 4
N 4
T 2
- batch 0
- scorer 'bleu'
- sample from 'kbest'
- filter 'uniq'
learning rate 1
- gamma 0
- loss margin 0
- faster perceptron 1
- pairs 'all'
- pair threshold 0
- select weights 'last'
- l1 reg 0 'none'
- pclr no
- max pairs 4294967295
- repeat 1
- cdec cfg 'cdec.ini'
- input ''
- output '-'
-(a dot represents 10 inputs)
+ error margin 0
+ l1 reg 0
+ decoder conf 'cdec.ini'
+ input 'in'
+ output 'weights'
+(a dot per input)
Iteration #1 of 2.
- 2
+ ... 2
WEIGHTS
logp = +0
- shell_rule = -1
- house_rule = +2
- small_rule = -2
+ shell_rule = +0
+ house_rule = +3
+ small_rule = +0
little_rule = +3
- PassThrough = -5
+ PassThrough = -15
PassThrough_1 = +0
PassThrough_2 = +0
PassThrough_3 = +0
@@ -42,26 +26,23 @@ WEIGHTS
PassThrough_5 = +0
PassThrough_6 = +0
---
- 1best avg score: 0.5 (+0.5)
- 1best avg model score: 2.5 (+2.5)
- avg # pairs: 1.5
- avg # rank err: 1.5 (meaningless)
- avg # margin viol: 0
- k-best loss imp: 100%
- non0 feature count: 6
+ 1best avg score: 0.40937 (+0.40937)
+ 1best avg model score: 3
+ avg # pairs: 2.5
+ non-0 feature count: 4
avg list sz: 4
avg f count: 2.875
(time 0 min, 0 s/S)
Iteration #2 of 2.
- 2
+ ... 2
WEIGHTS
logp = +0
- shell_rule = -1
- house_rule = +2
- small_rule = -2
+ shell_rule = +0
+ house_rule = +3
+ small_rule = +0
little_rule = +3
- PassThrough = -5
+ PassThrough = -15
PassThrough_1 = +0
PassThrough_2 = +0
PassThrough_3 = +0
@@ -69,26 +50,14 @@ WEIGHTS
PassThrough_5 = +0
PassThrough_6 = +0
---
- 1best avg score: 1 (+0.5)
- 1best avg model score: 5 (+2.5)
+ 1best avg score: 0.81873 (+0.40937)
+ 1best avg model score: 6
avg # pairs: 0
- avg # rank err: 0 (meaningless)
- avg # margin viol: 0
- k-best loss imp: 100%
- non0 feature count: 6
+ non-0 feature count: 4
avg list sz: 4
avg f count: 3
(time 0 min, 0 s/S)
-Writing weights file to '-' ...
-house_rule 2
-little_rule 3
-Glue -4
-PassThrough -5
-small_rule -2
-shell_rule -1
-done
-
---
-Best iteration: 2 [SCORE 'bleu'=1].
+Best iteration: 2 [GOLD = 0.81873].
This took 0 min.
diff --git a/training/dtrain/examples/toy/weights b/training/dtrain/examples/toy/weights
new file mode 100644
index 00000000..f6f32772
--- /dev/null
+++ b/training/dtrain/examples/toy/weights
@@ -0,0 +1,4 @@
+house_rule 3
+little_rule 3
+Glue -12
+PassThrough -15
diff --git a/training/dtrain/lplp.rb b/training/dtrain/lplp.rb
index 86e835e8..a1fcd1a3 100755
--- a/training/dtrain/lplp.rb
+++ b/training/dtrain/lplp.rb
@@ -19,7 +19,8 @@ end
# stats
def median(feature_column, n)
- return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0}).sort[feature_column.size/2]
+ return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0})\
+ .sort[feature_column.size/2]
end
def mean(feature_column, n)
@@ -28,7 +29,7 @@ end
# selection
def select_k(weights, norm_fun, n, k=10000)
- weights.sort{|a,b| norm_fun.call(b[1], n) <=> norm_fun.call(a[1], n)}.each { |p|
+ weights.sort{|a,b| norm_fun.call(b[1], n)<=>norm_fun.call(a[1], n)}.each { |p|
puts "#{p[0]}\t#{mean(p[1], n)}"
k -= 1
if k == 0 then break end
diff --git a/training/dtrain/pairs.h b/training/dtrain/pairs.h
deleted file mode 100644
index dea0dabc..00000000
--- a/training/dtrain/pairs.h
+++ /dev/null
@@ -1,55 +0,0 @@
-#ifndef _DTRAIN_PAIRS_H_
-#define _DTRAIN_PAIRS_H_
-
-namespace dtrain
-{
-
-bool
-CmpHypsByScore(ScoredHyp a, ScoredHyp b)
-{
- return a.score > b.score;
-}
-
-/*
- * multipartite ranking
- * sort (descending) by bleu
- * compare top X (hi) to middle Y (med) and low X (lo)
- * cmp middle Y to low X
- */
-inline void
-MakePairs(vector<ScoredHyp>* s,
- vector<pair<ScoredHyp,ScoredHyp> >& training,
- bool misranked_only,
- float hi_lo)
-{
- unsigned sz = s->size();
- if (sz < 2) return;
- sort(s->begin(), s->end(), CmpHypsByScore);
- unsigned sep = round(sz*hi_lo);
- // hi vs. med vs. low
- unsigned sep_hi = sep;
- if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi;
- else sep_hi = 1;
- for (unsigned i = 0; i < sep_hi; i++) {
- for (unsigned j = sep_hi; j < sz; j++) {
- if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- }
- // med vs. low
- unsigned sep_lo = sz-sep;
- while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo;
- for (unsigned i = sep_hi; i < sep_lo; i++) {
- for (unsigned j = sep_lo; j < sz; j++) {
- if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- }
-}
-
-} // namespace
-
-#endif
-
diff --git a/training/dtrain/parallelize.rb b/training/dtrain/parallelize.rb
index 9315b7f7..29f3e609 100755
--- a/training/dtrain/parallelize.rb
+++ b/training/dtrain/parallelize.rb
@@ -3,61 +3,52 @@
require 'trollop'
require 'zipf'
-def usage
- STDERR.write "Usage: "
- STDERR.write "ruby parallelize.rb -c <dtrain.ini> [-e <epochs=10>] [--randomize/-z] [--reshard/-y] -s <#shards|0> [-p <at once=9999>] -i <input> [--qsub/-q] [--dtrain_binary <path to dtrain binary>] [-l \"l2 select_k 100000\"] [--extra_qsub \"-l mem_free=24G\"]\n"
- exit 1
+conf = Trollop::options do
+ opt :config, "dtrain configuration", :type => :string
+ opt :input, "input as bitext (f ||| e)", :type => :string
+ opt :epochs, "number of epochs", :type => :int, :default => 10
+ opt :lplp_args, "arguments for lplp.rb", :type => :string, :default => "l2 select_k 100000"
+ opt :randomize, "randomize shards once", :type => :bool, :default => false, :short => '-z'
+ opt :reshard, "randomize after each epoch", :type => :bool, :default => false, :short => '-y'
+ opt :shards, "number of shards", :type => :int
+ opt :weights, "input weights for first epoch", :type => :string, :default => ''
+ opt :per_shard_decoder_configs, "give custom decoder config per shard", :type => :string, :short => '-o'
+ opt :processes_at_once, "jobs to run at oce", :type => :int, :default => 9999
+ opt :qsub, "use qsub", :type => :bool, :default => false
+ opt :qsub_args, "extra args for qsub", :type => :string, :default => "-l h_vmem=5G"
+ opt :dtrain_binary, "path to dtrain binary", :type => :string
end
-opts = Trollop::options do
- opt :config, "dtrain config file", :type => :string
- opt :epochs, "number of epochs", :type => :int, :default => 10
- opt :lplp_args, "arguments for lplp.rb", :type => :string, :default => "l2 select_k 100000"
- opt :randomize, "randomize shards before each epoch", :type => :bool, :short => '-z', :default => false
- opt :reshard, "reshard after each epoch", :type => :bool, :short => '-y', :default => false
- opt :shards, "number of shards", :type => :int
- opt :processes_at_once, "have this number (max) running at the same time", :type => :int, :default => 9999
- opt :input, "input (bitext f ||| e ||| ...)", :type => :string
- opt :dtrain_binary, "path to dtrain binary", :type => :string
- opt :qsub, "use qsub", :type => :bool, :default => false
- opt :qsub_args, "extra args for qsub", :type => :string, :default => "-l h_vmem=5G"
- opt :first_input_weights, "input weights for first iter", :type => :string, :default => '', :short => '-w'
- opt :per_shard_decoder_configs, "give special decoder config per shard", :type => :string, :short => '-o'
-end
-usage if not opts[:config]&&opts[:shards]&&opts[:input]
-
dtrain_dir = File.expand_path File.dirname(__FILE__)
-if not opts[:dtrain_binary]
+if not conf[:dtrain_binary]
dtrain_bin = "#{dtrain_dir}/dtrain"
else
- dtrain_bin = opts[:dtrain_binary]
+ dtrain_bin = conf[:dtrain_binary]
end
-ruby = '/usr/bin/ruby'
lplp_rb = "#{dtrain_dir}/lplp.rb"
-lplp_args = opts[:lplp_args]
-cat = '/bin/cat'
+lplp_args = conf[:lplp_args]
-ini = opts[:config]
-epochs = opts[:epochs]
-rand = opts[:randomize]
-reshard = opts[:reshard]
-predefined_shards = false
+dtrain_conf = conf[:config]
+epochs = conf[:epochs]
+rand = conf[:randomize]
+reshard = conf[:reshard]
+predefined_shards = false
per_shard_decoder_configs = false
-if opts[:shards] == 0
+if conf[:shards] == 0
predefined_shards = true
num_shards = 0
- per_shard_decoder_configs = true if opts[:per_shard_decoder_configs]
+ per_shard_decoder_configs = true if conf[:per_shard_decoder_configs]
else
- num_shards = opts[:shards]
+ num_shards = conf[:shards]
end
-input = opts[:input]
-use_qsub = opts[:qsub]
-shards_at_once = opts[:processes_at_once]
-first_input_weights = opts[:first_input_weights]
+input = conf[:input]
+use_qsub = conf[:qsub]
+shards_at_once = conf[:processes_at_once]
+first_input_weights = conf[:weights]
`mkdir work`
-def make_shards(input, num_shards, epoch, rand)
+def make_shards input, num_shards, epoch, rand
lc = `wc -l #{input}`.split.first.to_i
index = (0..lc-1).to_a
index.reverse!
@@ -97,7 +88,8 @@ input_files = []
if predefined_shards
input_files = File.new(input).readlines.map {|i| i.strip }
if per_shard_decoder_configs
- decoder_configs = File.new(opts[:per_shard_decoder_configs]).readlines.map {|i| i.strip}
+ decoder_configs = ReadFile.readlines_strip(conf[:per_shard_decoder_configs]
+ ).map { |i| i.strip }
end
num_shards = input_files.size
else
@@ -118,22 +110,29 @@ end
qsub_str_start = qsub_str_end = ''
local_end = ''
if use_qsub
- qsub_str_start = "qsub #{opts[:qsub_args]} -cwd -sync y -b y -j y -o work/out.#{shard}.#{epoch} -N dtrain.#{shard}.#{epoch} \""
+ qsub_str_start = "qsub #{conf[:qsub_args]} -cwd -sync y -b y -j y\
+ -o work/out.#{shard}.#{epoch}\
+ -N dtrain.#{shard}.#{epoch} \""
qsub_str_end = "\""
local_end = ''
else
local_end = "2>work/out.#{shard}.#{epoch}"
end
if per_shard_decoder_configs
- cdec_cfg = "--decoder_config #{decoder_configs[shard]}"
+ cdec_conf = "--decoder_config #{decoder_configs[shard]}"
else
- cdec_cfg = ""
+ cdec_conf = ""
end
if first_input_weights!='' && epoch == 0
input_weights = "--input_weights #{first_input_weights}"
end
pids << Kernel.fork {
- `#{qsub_str_start}#{dtrain_bin} -c #{ini} #{cdec_cfg} #{input_weights}\
+ puts "#{qsub_str_start}#{dtrain_bin} -c #{dtrain_conf} #{cdec_conf}\
+ #{input_weights}\
+ --bitext #{input_files[shard]}\
+ --output work/weights.#{shard}.#{epoch}#{qsub_str_end} #{local_end}"
+ `#{qsub_str_start}#{dtrain_bin} -c #{dtrain_conf} #{cdec_conf}\
+ #{input_weights}\
--bitext #{input_files[shard]}\
--output work/weights.#{shard}.#{epoch}#{qsub_str_end} #{local_end}`
}
@@ -144,8 +143,9 @@ end
pids.each { |pid| Process.wait(pid) }
pids.clear
end
- `#{cat} work/weights.*.#{epoch} > work/weights_cat`
- `#{ruby} #{lplp_rb} #{lplp_args} #{num_shards} < work/weights_cat > work/weights.#{epoch}`
+ `cat work/weights.*.#{epoch} > work/weights_cat`
+ `ruby #{lplp_rb} #{lplp_args} #{num_shards} < work/weights_cat\
+ > work/weights.#{epoch}`
if rand and reshard and epoch+1!=epochs
input_files, num_shards = make_shards input, num_shards, epoch+1, rand
end
diff --git a/training/dtrain/sample.h b/training/dtrain/sample.h
index 64d93cb0..c3586c58 100644
--- a/training/dtrain/sample.h
+++ b/training/dtrain/sample.h
@@ -9,14 +9,16 @@ namespace dtrain
struct ScoredKbest : public DecoderObserver
{
- const unsigned k_;
+ const size_t k_;
vector<ScoredHyp> s_;
- unsigned src_len_;
+ size_t src_len_;
PerSentenceBleuScorer* scorer_;
vector<vector<WordID> >* refs_;
- unsigned f_count_, sz_;
+ vector<Ngrams>* ref_ngs_;
+ vector<size_t>* ref_ls_;
+ size_t f_count_, sz_;
- ScoredKbest(const unsigned k, PerSentenceBleuScorer* scorer) :
+ ScoredKbest(const size_t k, PerSentenceBleuScorer* scorer) :
k_(k), scorer_(scorer) {}
virtual void
@@ -26,7 +28,7 @@ struct ScoredKbest : public DecoderObserver
s_.clear(); sz_ = f_count_ = 0;
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
KBest::FilterUnique, prob_t, EdgeProb> kbest(*hg, k_);
- for (unsigned i = 0; i < k_; ++i) {
+ for (size_t i = 0; i < k_; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique,
prob_t, EdgeProb>::Derivation* d =
kbest.LazyKthBest(hg->nodes_.size() - 1, i);
@@ -36,7 +38,7 @@ struct ScoredKbest : public DecoderObserver
h.f = d->feature_values;
h.model = log(d->score);
h.rank = i;
- h.score = scorer_->Score(h.w, *refs_);
+ h.gold = scorer_->Score(h.w, *ref_ngs_, *ref_ls_);
s_.push_back(h);
sz_++;
f_count_ += h.f.size();
@@ -44,9 +46,13 @@ struct ScoredKbest : public DecoderObserver
}
vector<ScoredHyp>* GetSamples() { return &s_; }
- inline void SetReference(vector<vector<WordID> >& refs) { refs_ = &refs; }
- inline unsigned GetFeatureCount() { return f_count_; }
- inline unsigned GetSize() { return sz_; }
+ inline void SetReference(vector<Ngrams>& ngs, vector<size_t>& ls)
+ {
+ ref_ngs_ = &ngs;
+ ref_ls_ = &ls;
+ }
+ inline size_t GetFeatureCount() { return f_count_; }
+ inline size_t GetSize() { return sz_; }
};
diff --git a/training/dtrain/score.h b/training/dtrain/score.h
index c727dd30..d51aef82 100644
--- a/training/dtrain/score.h
+++ b/training/dtrain/score.h
@@ -8,17 +8,17 @@ namespace dtrain
struct NgramCounts
{
- unsigned N_;
- map<unsigned, score_t> clipped_;
- map<unsigned, score_t> sum_;
+ size_t N_;
+ map<size_t, weight_t> clipped_;
+ map<size_t, weight_t> sum_;
- NgramCounts(const unsigned N) : N_(N) { Zero(); }
+ NgramCounts(const size_t N) : N_(N) { Zero(); }
inline void
operator+=(const NgramCounts& rhs)
{
if (rhs.N_ > N_) Resize(rhs.N_);
- for (unsigned i = 0; i < N_; i++) {
+ for (size_t i = 0; i < N_; i++) {
this->clipped_[i] += rhs.clipped_.find(i)->second;
this->sum_[i] += rhs.sum_.find(i)->second;
}
@@ -34,16 +34,16 @@ struct NgramCounts
}
inline void
- operator*=(const score_t rhs)
+ operator*=(const weight_t rhs)
{
- for (unsigned i = 0; i < N_; i++) {
+ for (size_t i = 0; i < N_; i++) {
this->clipped_[i] *= rhs;
this->sum_[i] *= rhs;
}
}
inline void
- Add(const unsigned count, const unsigned ref_count, const unsigned i)
+ Add(const size_t count, const size_t ref_count, const size_t i)
{
assert(i < N_);
if (count > ref_count) {
@@ -57,40 +57,31 @@ struct NgramCounts
inline void
Zero()
{
- for (unsigned i = 0; i < N_; i++) {
+ for (size_t i = 0; i < N_; i++) {
clipped_[i] = 0.;
sum_[i] = 0.;
}
}
inline void
- One()
+ Print(ostream& os=cerr)
{
- for (unsigned i = 0; i < N_; i++) {
- clipped_[i] = 1.;
- sum_[i] = 1.;
+ for (size_t i = 0; i < N_; i++) {
+ os << i+1 << "grams (clipped):\t" << clipped_[i] << endl;
+ os << i+1 << "grams:\t\t\t" << sum_[i] << endl;
}
}
- inline void
- Print()
- {
- for (unsigned i = 0; i < N_; i++) {
- cout << i+1 << "grams (clipped):\t" << clipped_[i] << endl;
- cout << i+1 << "grams:\t\t\t" << sum_[i] << endl;
- }
- }
-
- inline void Resize(unsigned N)
+ inline void Resize(size_t N)
{
if (N == N_) return;
else if (N > N_) {
- for (unsigned i = N_; i < N; i++) {
+ for (size_t i = N_; i < N; i++) {
clipped_[i] = 0.;
sum_[i] = 0.;
}
} else { // N < N_
- for (unsigned i = N_-1; i > N-1; i--) {
+ for (size_t i = N_-1; i > N-1; i--) {
clipped_.erase(i);
sum_.erase(i);
}
@@ -99,16 +90,16 @@ struct NgramCounts
}
};
-typedef map<vector<WordID>, unsigned> Ngrams;
+typedef map<vector<WordID>, size_t> Ngrams;
inline Ngrams
-MakeNgrams(const vector<WordID>& s, const unsigned N)
+MakeNgrams(const vector<WordID>& s, const size_t N)
{
Ngrams ngrams;
vector<WordID> ng;
for (size_t i = 0; i < s.size(); i++) {
ng.clear();
- for (unsigned j = i; j < min(i+N, s.size()); j++) {
+ for (size_t j = i; j < min(i+N, s.size()); j++) {
ng.push_back(s[j]);
ngrams[ng]++;
}
@@ -118,24 +109,21 @@ MakeNgrams(const vector<WordID>& s, const unsigned N)
}
inline NgramCounts
-MakeNgramCounts(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned N)
+MakeNgramCounts(const vector<WordID>& hyp,
+ const vector<Ngrams>& ref,
+ const size_t N)
{
Ngrams hyp_ngrams = MakeNgrams(hyp, N);
- vector<Ngrams> refs_ngrams;
- for (auto r: refs) {
- Ngrams r_ng = MakeNgrams(r, N);
- refs_ngrams.push_back(r_ng);
- }
NgramCounts counts(N);
Ngrams::iterator it, ti;
for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) {
- unsigned max_ref_count = 0;
- for (auto ref_ngrams: refs_ngrams) {
- ti = ref_ngrams.find(it->first);
- if (ti != ref_ngrams.end())
+ size_t max_ref_count = 0;
+ for (auto r: ref) {
+ ti = r.find(it->first);
+ if (ti != r.end())
max_ref_count = max(max_ref_count, ti->second);
}
- counts.Add(it->second, min(it->second, max_ref_count), it->first.size() - 1);
+ counts.Add(it->second, min(it->second, max_ref_count), it->first.size()-1);
}
return counts;
@@ -150,56 +138,65 @@ MakeNgramCounts(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
* [simply add 1 to reference length for calculation of BP]
*
*/
-
struct PerSentenceBleuScorer
{
- const unsigned N_;
- vector<score_t> w_;
+ const size_t N_;
+ vector<weight_t> w_;
- PerSentenceBleuScorer(unsigned n) : N_(n)
+ PerSentenceBleuScorer(size_t n) : N_(n)
{
- for (auto i = 1; i <= N_; i++)
+ for (size_t i = 1; i <= N_; i++)
w_.push_back(1.0/N_);
}
- inline score_t
- BrevityPenalty(const unsigned hyp_len, const unsigned ref_len)
+ inline weight_t
+ BrevityPenalty(const size_t hl, const size_t rl)
{
- if (hyp_len > ref_len) return 1;
- return exp(1 - (score_t)ref_len/hyp_len);
+ if (hl > rl)
+ return 1;
+
+ return exp(1 - (weight_t)rl/hl);
}
- score_t
- Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs)
+ weight_t
+ Score(const vector<WordID>& hyp,
+ const vector<Ngrams>& ref_ngs,
+ const vector<size_t>& ref_ls)
{
- unsigned hyp_len = hyp.size(), ref_len = 0;
+ size_t hl = hyp.size(), rl = 0;
+ if (hl == 0) return 0.;
// best match reference length
- if (refs.size() == 1) {
- ref_len = refs[0].size();
+ if (ref_ls.size() == 1) {
+ rl = ref_ls.front();
} else {
- unsigned i = 0, best_idx = 0;
- unsigned best = std::numeric_limits<unsigned>::max();
- for (auto r: refs) {
- unsigned d = abs(hyp_len-r.size());
- if (best > d) best_idx = i;
+ size_t i = 0, best_idx = 0;
+ size_t best = numeric_limits<size_t>::max();
+ for (auto l: ref_ls) {
+ size_t d = abs(hl-l);
+ if (d < best) {
+ best_idx = i;
+ best = d;
+ }
+ i += 1;
}
- ref_len = refs[best_idx].size();
+ rl = ref_ls[best_idx];
}
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = MakeNgramCounts(hyp, refs, N_);
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
+ if (rl == 0) return 0.;
+ NgramCounts counts = MakeNgramCounts(hyp, ref_ngs, N_);
+ size_t M = N_;
+ vector<weight_t> v = w_;
+ if (rl < N_) {
+ M = rl;
+ for (size_t i = 0; i < M; i++) v[i] = 1/((weight_t)M);
}
- score_t sum = 0, add = 0;
- for (unsigned i = 0; i < M; i++) {
+ weight_t sum = 0, add = 0;
+ for (size_t i = 0; i < M; i++) {
if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
if (i == 1) add = 1;
- sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
+ sum += v[i] * log(((weight_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
}
- return BrevityPenalty(hyp_len, ref_len+1) * exp(sum);
+
+ return BrevityPenalty(hl, rl+1) * exp(sum);
}
};
diff --git a/training/dtrain/update.h b/training/dtrain/update.h
new file mode 100644
index 00000000..57671ce1
--- /dev/null
+++ b/training/dtrain/update.h
@@ -0,0 +1,65 @@
+#ifndef _DTRAIN_UPDATE_H_
+#define _DTRAIN_UPDATE_H_
+
+namespace dtrain
+{
+
+bool
+CmpHypsByGold(ScoredHyp a, ScoredHyp b)
+{
+ return a.gold > b.gold;
+}
+
+/*
+ * multipartite ranking
+ * sort (descending) by bleu
+ * compare top X (hi) to middle Y (med) and low X (lo)
+ * cmp middle Y to low X
+ */
+inline size_t
+CollectUpdates(vector<ScoredHyp>* s,
+ SparseVector<weight_t>& updates,
+ float margin=1.0)
+{
+ size_t num_pairs = 0;
+ size_t sz = s->size();
+ if (sz < 2) return 0;
+ sort(s->begin(), s->end(), CmpHypsByGold);
+ size_t sep = round(sz*0.1);
+ size_t sep_hi = sep;
+ if (sz > 4) {
+ while
+ (sep_hi < sz && (*s)[sep_hi-1].gold == (*s)[sep_hi].gold) ++sep_hi;
+ }
+ else sep_hi = 1;
+ for (size_t i = 0; i < sep_hi; i++) {
+ for (size_t j = sep_hi; j < sz; j++) {
+ if (((*s)[i].model-(*s)[j].model) > margin)
+ continue;
+ if ((*s)[i].gold != (*s)[j].gold) {
+ updates += (*s)[i].f-(*s)[j].f;
+ num_pairs++;
+ }
+ }
+ }
+ size_t sep_lo = sz-sep;
+ while (sep_lo > 0 && (*s)[sep_lo-1].gold == (*s)[sep_lo].gold)
+ --sep_lo;
+ for (size_t i = sep_hi; i < sep_lo; i++) {
+ for (size_t j = sep_lo; j < sz; j++) {
+ if (((*s)[i].model-(*s)[j].model) > margin)
+ continue;
+ if ((*s)[i].gold != (*s)[j].gold) {
+ updates += (*s)[i].f-(*s)[j].f;
+ num_pairs++;
+ }
+ }
+ }
+
+ return num_pairs;
+}
+
+} // namespace
+
+#endif
+