diff options
Diffstat (limited to 'training/dtrain')
| -rw-r--r-- | training/dtrain/dtrain.cc | 28 | ||||
| -rw-r--r-- | training/dtrain/dtrain.h | 74 | ||||
| -rw-r--r-- | training/dtrain/examples/standard/dtrain.ini | 24 | ||||
| -rw-r--r-- | training/dtrain/examples/standard/expected-output | 84 | ||||
| -rw-r--r-- | training/dtrain/kbestget.h | 66 | ||||
| -rw-r--r-- | training/dtrain/ksampler.h | 5 | ||||
| -rw-r--r-- | training/dtrain/score.h | 17 | 
7 files changed, 144 insertions, 154 deletions
| diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc index 149f87d4..83e4e440 100644 --- a/training/dtrain/dtrain.cc +++ b/training/dtrain/dtrain.cc @@ -1,4 +1,10 @@  #include "dtrain.h" +#include "score.h" +#include "kbestget.h" +#include "ksampler.h" +#include "pairsampling.h" + +using namespace dtrain;  bool @@ -138,23 +144,23 @@ main(int argc, char** argv)    string scorer_str = cfg["scorer"].as<string>();    LocalScorer* scorer;    if (scorer_str == "bleu") { -    scorer = dynamic_cast<BleuScorer*>(new BleuScorer); +    scorer = static_cast<BleuScorer*>(new BleuScorer);    } else if (scorer_str == "stupid_bleu") { -    scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer); +    scorer = static_cast<StupidBleuScorer*>(new StupidBleuScorer);    } else if (scorer_str == "fixed_stupid_bleu") { -    scorer = dynamic_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer); +    scorer = static_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer);    } else if (scorer_str == "smooth_bleu") { -    scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer); +    scorer = static_cast<SmoothBleuScorer*>(new SmoothBleuScorer);    } else if (scorer_str == "sum_bleu") { -    scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer); +    scorer = static_cast<SumBleuScorer*>(new SumBleuScorer);    } else if (scorer_str == "sumexp_bleu") { -    scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer); +    scorer = static_cast<SumExpBleuScorer*>(new SumExpBleuScorer);    } else if (scorer_str == "sumwhatever_bleu") { -    scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); +    scorer = static_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer);    } else if (scorer_str == "approx_bleu") { -    scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); +    scorer = static_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d));    } else if (scorer_str == "lc_bleu") { -    scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); +    scorer = static_cast<LinearBleuScorer*>(new LinearBleuScorer(N));    } else {      cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;      exit(1); @@ -166,9 +172,9 @@ main(int argc, char** argv)    MT19937 rng; // random number generator, only for forest sampling    HypSampler* observer;    if (sample_from == "kbest") -    observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type)); +    observer = static_cast<KBestGetter*>(new KBestGetter(k, filter_type));    else -    observer = dynamic_cast<KSampler*>(new KSampler(k, &rng)); +    observer = static_cast<KSampler*>(new KSampler(k, &rng));    observer->SetScorer(scorer);    // init weights diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h index eb0b9f17..3981fb39 100644 --- a/training/dtrain/dtrain.h +++ b/training/dtrain/dtrain.h @@ -11,16 +11,19 @@  #include <boost/algorithm/string.hpp>  #include <boost/program_options.hpp> -#include "ksampler.h" -#include "pairsampling.h" - -#include "filelib.h" - +#include "decoder.h" +#include "ff_register.h" +#include "sentence_metadata.h" +#include "verbose.h" +#include "viterbi.h"  using namespace std; -using namespace dtrain;  namespace po = boost::program_options; +namespace dtrain +{ + +  inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids)  {    vector<string>::const_iterator it; @@ -42,17 +45,55 @@ inline string gettmpf(const string path, const string infix)    return string(fn);  } -inline void split_in(string& s, vector<string>& parts) +typedef double score_t; + +struct ScoredHyp  { -  unsigned f = 0; -  for(unsigned i = 0; i < 3; i++) { -    unsigned e = f; -    f = s.find("\t", f+1); -    if (e != 0) parts.push_back(s.substr(e+1, f-e-1)); -    else parts.push_back(s.substr(0, f)); +  vector<WordID> w; +  SparseVector<double> f; +  score_t model; +  score_t score; +  unsigned rank; +}; + +struct LocalScorer +{ +  unsigned N_; +  vector<score_t> w_; + +  virtual score_t +  Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0; + +  virtual void Reset() {} // only for ApproxBleuScorer, LinearBleuScorer + +  inline void +  Init(unsigned N, vector<score_t> weights) +  { +    assert(N > 0); +    N_ = N; +    if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_); +    else w_ = weights;    } -  s.erase(0, f+1); -} + +  inline score_t +  brevity_penalty(const unsigned hyp_len, const unsigned ref_len) +  { +    if (hyp_len > ref_len) return 1; +    return exp(1 - (score_t)ref_len/hyp_len); +  } +}; + +struct HypSampler : public DecoderObserver +{ +  LocalScorer* scorer_; +  vector<WordID>* ref_; +  unsigned f_count_, sz_; +  virtual vector<ScoredHyp>* GetSamples()=0; +  inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; } +  inline void SetRef(vector<WordID>& ref) { ref_ = &ref; } +  inline unsigned get_f_count() { return f_count_; } +  inline unsigned get_sz() { return sz_; } +};  struct HSReporter  { @@ -88,5 +129,8 @@ inline T sign(T z)    return z < 0 ? -1 : +1;  } + +} // namespace +  #endif diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini index e1072d30..23e94285 100644 --- a/training/dtrain/examples/standard/dtrain.ini +++ b/training/dtrain/examples/standard/dtrain.ini @@ -10,15 +10,15 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr  stop_after=10 # stop epoch after 10 inputs  # interesting stuff -epochs=2                # run over input 2 times -k=100                   # use 100best lists -N=4                     # optimize (approx) BLEU4 -scorer=stupid_bleu      # use 'stupid' BLEU+1 -learning_rate=1.0       # learning rate, don't care if gamma=0 (perceptron) -gamma=0                 # use SVM reg -sample_from=kbest       # use kbest lists (as opposed to forest) -filter=uniq             # only unique entries in kbest (surface form) -pair_sampling=XYX       # -hi_lo=0.1               # 10 vs 80 vs 10 and 80 vs 10 here -pair_threshold=0        # minimum distance in BLEU (here: > 0) -loss_margin=0           # update if correctly ranked, but within this margin +epochs=2                 # run over input 2 times +k=100                    # use 100best lists +N=4                      # optimize (approx) BLEU4 +scorer=fixed_stupid_bleu # use 'stupid' BLEU+1 +learning_rate=1.0        # learning rate, don't care if gamma=0 (perceptron) +gamma=0                  # use SVM reg +sample_from=kbest        # use kbest lists (as opposed to forest) +filter=uniq              # only unique entries in kbest (surface form) +pair_sampling=XYX        # +hi_lo=0.1                # 10 vs 80 vs 10 and 80 vs 10 here +pair_threshold=0         # minimum distance in BLEU (here: > 0) +loss_margin=0            # update if correctly ranked, but within this margin diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output index 7cd09dbf..9a25062b 100644 --- a/training/dtrain/examples/standard/expected-output +++ b/training/dtrain/examples/standard/expected-output @@ -4,14 +4,14 @@ Reading ./nc-wmt11.en.srilm.gz  ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100  ****************************************************************************************************    Example feature: Shape_S00000_T00000 -Seeding random number sequence to 2679584485 +Seeding random number sequence to 1677737427  dtrain  Parameters:                         k 100                         N 4                         T 2 -                  scorer 'stupid_bleu' +                  scorer 'fixed_stupid_bleu'               sample from 'kbest'                    filter 'uniq'             learning rate 1 @@ -34,58 +34,58 @@ Iteration #1 of 2.   . 10  Stopping after 10 input sentences.  WEIGHTS -              Glue = -576 -       WordPenalty = +417.79 -     LanguageModel = +5117.5 - LanguageModel_OOV = -1307 -     PhraseModel_0 = -1612 -     PhraseModel_1 = -2159.6 -     PhraseModel_2 = -677.36 -     PhraseModel_3 = +2663.8 -     PhraseModel_4 = -1025.9 -     PhraseModel_5 = -8 -     PhraseModel_6 = +70 -       PassThrough = -1455 +              Glue = -1155 +       WordPenalty = -329.63 +     LanguageModel = +3903 + LanguageModel_OOV = -1630 +     PhraseModel_0 = +2746.9 +     PhraseModel_1 = +1200.3 +     PhraseModel_2 = -1004.1 +     PhraseModel_3 = +2223.1 +     PhraseModel_4 = +551.58 +     PhraseModel_5 = +217 +     PhraseModel_6 = +1816 +       PassThrough = -1603          --- -       1best avg score: 0.27697 (+0.27697) - 1best avg model score: -47918 (-47918) -           avg # pairs: 581.9 (meaningless) -        avg # rank err: 581.9 +       1best avg score: 0.19344 (+0.19344) + 1best avg model score: 81387 (+81387) +           avg # pairs: 616.3 (meaningless) +        avg # rank err: 616.3       avg # margin viol: 0 -    non0 feature count: 703 +    non0 feature count: 673             avg list sz: 90.9 -           avg f count: 100.09 -(time 0.25 min, 1.5 s/S) +           avg f count: 104.26 +(time 0.38 min, 2.3 s/S)  Iteration #2 of 2.   . 10  WEIGHTS -              Glue = -622 -       WordPenalty = +898.56 -     LanguageModel = +8066.2 - LanguageModel_OOV = -2590 -     PhraseModel_0 = -4335.8 -     PhraseModel_1 = -5864.4 -     PhraseModel_2 = -1729.8 -     PhraseModel_3 = +2831.9 -     PhraseModel_4 = -5384.8 -     PhraseModel_5 = +1449 -     PhraseModel_6 = +480 -       PassThrough = -2578 +              Glue = -994 +       WordPenalty = -778.69 +     LanguageModel = +2348.9 + LanguageModel_OOV = -1967 +     PhraseModel_0 = -412.72 +     PhraseModel_1 = +1428.9 +     PhraseModel_2 = +1967.4 +     PhraseModel_3 = -944.99 +     PhraseModel_4 = -239.7 +     PhraseModel_5 = +708 +     PhraseModel_6 = +645 +       PassThrough = -1866          --- -       1best avg score: 0.37119 (+0.094226) - 1best avg model score: -1.3174e+05 (-83822) -           avg # pairs: 584.1 (meaningless) -        avg # rank err: 584.1 +       1best avg score: 0.22395 (+0.03051) + 1best avg model score: -31388 (-1.1278e+05) +           avg # pairs: 702.3 (meaningless) +        avg # rank err: 702.3       avg # margin viol: 0 -    non0 feature count: 1115 +    non0 feature count: 955             avg list sz: 91.3 -           avg f count: 90.755 -(time 0.3 min, 1.8 s/S) +           avg f count: 103.45 +(time 0.32 min, 1.9 s/S)  Writing weights file to '-' ...  done  --- -Best iteration: 2 [SCORE 'stupid_bleu'=0.37119]. -This took 0.55 min. +Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.22395]. +This took 0.7 min. diff --git a/training/dtrain/kbestget.h b/training/dtrain/kbestget.h index dd8882e1..85252db3 100644 --- a/training/dtrain/kbestget.h +++ b/training/dtrain/kbestget.h @@ -1,76 +1,12 @@  #ifndef _DTRAIN_KBESTGET_H_  #define _DTRAIN_KBESTGET_H_ -#include "kbest.h" // cdec -#include "sentence_metadata.h" - -#include "verbose.h" -#include "viterbi.h" -#include "ff_register.h" -#include "decoder.h" -#include "weights.h" -#include "logval.h" - -using namespace std; +#include "kbest.h"  namespace dtrain  { -typedef double score_t; - -struct ScoredHyp -{ -  vector<WordID> w; -  SparseVector<double> f; -  score_t model; -  score_t score; -  unsigned rank; -}; - -struct LocalScorer -{ -  unsigned N_; -  vector<score_t> w_; - -  virtual score_t -  Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0; - -  void Reset() {} // only for approx bleu - -  inline void -  Init(unsigned N, vector<score_t> weights) -  { -    assert(N > 0); -    N_ = N; -    if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_); -    else w_ = weights; -  } - -  inline score_t -  brevity_penalty(const unsigned hyp_len, const unsigned ref_len) -  { -    if (hyp_len > ref_len) return 1; -    return exp(1 - (score_t)ref_len/hyp_len); -  } -}; - -struct HypSampler : public DecoderObserver -{ -  LocalScorer* scorer_; -  vector<WordID>* ref_; -  unsigned f_count_, sz_; -  virtual vector<ScoredHyp>* GetSamples()=0; -  inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; } -  inline void SetRef(vector<WordID>& ref) { ref_ = &ref; } -  inline unsigned get_f_count() { return f_count_; } -  inline unsigned get_sz() { return sz_; } -}; -//////////////////////////////////////////////////////////////////////////////// - - - -  struct KBestGetter : public HypSampler  {    const unsigned k_; diff --git a/training/dtrain/ksampler.h b/training/dtrain/ksampler.h index bc2f56cd..29dab667 100644 --- a/training/dtrain/ksampler.h +++ b/training/dtrain/ksampler.h @@ -1,13 +1,12 @@  #ifndef _DTRAIN_KSAMPLER_H_  #define _DTRAIN_KSAMPLER_H_ -#include "hg_sampler.h" // cdec -#include "kbestget.h" -#include "score.h" +#include "hg_sampler.h"  namespace dtrain  { +  bool  cmp_hyp_by_model_d(ScoredHyp a, ScoredHyp b)  { diff --git a/training/dtrain/score.h b/training/dtrain/score.h index bddaa071..53e970ba 100644 --- a/training/dtrain/score.h +++ b/training/dtrain/score.h @@ -1,9 +1,7 @@  #ifndef _DTRAIN_SCORE_H_  #define _DTRAIN_SCORE_H_ -#include "kbestget.h" - -using namespace std; +#include "dtrain.h"  namespace dtrain  { @@ -141,36 +139,43 @@ struct BleuScorer : public LocalScorer  {    score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len);    score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  void Reset() {}  };  struct StupidBleuScorer : public LocalScorer  {    score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  void Reset() {}  };  struct FixedStupidBleuScorer : public LocalScorer  {    score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  void Reset() {}  };  struct SmoothBleuScorer : public LocalScorer  {    score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  void Reset() {}  };  struct SumBleuScorer : public LocalScorer  { -   score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  void Reset() {}  };  struct SumExpBleuScorer : public LocalScorer  { -   score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  void Reset() {}  };  struct SumWhateverBleuScorer : public LocalScorer  { -   score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +  void Reset() {};  };  struct ApproxBleuScorer : public BleuScorer | 
