summaryrefslogtreecommitdiff
path: root/training/dtrain
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain')
-rw-r--r--training/dtrain/sample_net.h61
1 files changed, 0 insertions, 61 deletions
diff --git a/training/dtrain/sample_net.h b/training/dtrain/sample_net.h
deleted file mode 100644
index 497149d9..00000000
--- a/training/dtrain/sample_net.h
+++ /dev/null
@@ -1,61 +0,0 @@
-#ifndef _DTRAIN_SAMPLE_NET_H_
-#define _DTRAIN_SAMPLE_NET_H_
-
-#include "kbest.h"
-
-#include "score.h"
-
-namespace dtrain
-{
-
-struct ScoredKbest : public DecoderObserver
-{
- const size_t k_;
- size_t feature_count_, effective_sz_;
- vector<ScoredHyp> samples_;
- PerSentenceBleuScorer* scorer_;
- vector<Ngrams>* ref_ngs_;
- vector<size_t>* ref_ls_;
- bool dont_score;
-
- ScoredKbest(const size_t k, PerSentenceBleuScorer* scorer) :
- k_(k), scorer_(scorer), dont_score(false) {}
-
- virtual void
- NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
- {
- samples_.clear(); effective_sz_ = feature_count_ = 0;
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
- KBest::FilterUnique, prob_t, EdgeProb> kbest(*hg, k_);
- for (size_t i = 0; i < k_; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
- KBest::FilterUnique, prob_t, EdgeProb>::Derivation* d =
- kbest.LazyKthBest(hg->nodes_.size() - 1, i);
- if (!d) break;
- ScoredHyp h;
- h.w = d->yield;
- h.f = d->feature_values;
- h.model = log(d->score);
- h.rank = i;
- if (!dont_score)
- h.gold = scorer_->Score(h.w, *ref_ngs_, *ref_ls_);
- samples_.push_back(h);
- effective_sz_++;
- feature_count_ += h.f.size();
- }
- }
-
- vector<ScoredHyp>* GetSamples() { return &samples_; }
- inline void SetReference(vector<Ngrams>& ngs, vector<size_t>& ls)
- {
- ref_ngs_ = &ngs;
- ref_ls_ = &ls;
- }
- inline size_t GetFeatureCount() { return feature_count_; }
- inline size_t GetSize() { return effective_sz_; }
-};
-
-} // namespace
-
-#endif
-