diff options
Diffstat (limited to 'training/dtrain')
| -rw-r--r-- | training/dtrain/sample_net.h | 61 | 
1 files changed, 0 insertions, 61 deletions
diff --git a/training/dtrain/sample_net.h b/training/dtrain/sample_net.h deleted file mode 100644 index 497149d9..00000000 --- a/training/dtrain/sample_net.h +++ /dev/null @@ -1,61 +0,0 @@ -#ifndef _DTRAIN_SAMPLE_NET_H_ -#define _DTRAIN_SAMPLE_NET_H_ - -#include "kbest.h" - -#include "score.h" - -namespace dtrain -{ - -struct ScoredKbest : public DecoderObserver -{ -  const size_t k_; -  size_t feature_count_, effective_sz_; -  vector<ScoredHyp> samples_; -  PerSentenceBleuScorer* scorer_; -  vector<Ngrams>* ref_ngs_; -  vector<size_t>* ref_ls_; -  bool dont_score; - -  ScoredKbest(const size_t k, PerSentenceBleuScorer* scorer) : -    k_(k), scorer_(scorer), dont_score(false) {} - -  virtual void -  NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) -  { -    samples_.clear(); effective_sz_ = feature_count_ = 0; -    KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, -      KBest::FilterUnique, prob_t, EdgeProb> kbest(*hg, k_); -    for (size_t i = 0; i < k_; ++i) { -      const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, -            KBest::FilterUnique, prob_t, EdgeProb>::Derivation* d = -              kbest.LazyKthBest(hg->nodes_.size() - 1, i); -      if (!d) break; -      ScoredHyp h; -      h.w = d->yield; -      h.f = d->feature_values; -      h.model = log(d->score); -      h.rank = i; -      if (!dont_score) -        h.gold = scorer_->Score(h.w, *ref_ngs_, *ref_ls_); -      samples_.push_back(h); -      effective_sz_++; -      feature_count_ += h.f.size(); -    } -  } - -  vector<ScoredHyp>* GetSamples() { return &samples_; } -  inline void SetReference(vector<Ngrams>& ngs, vector<size_t>& ls) -  { -    ref_ngs_ = &ngs; -    ref_ls_ = &ls; -  } -  inline size_t GetFeatureCount() { return feature_count_; } -  inline size_t GetSize() { return effective_sz_; } -}; - -} // namespace - -#endif -  | 
