summaryrefslogtreecommitdiff
path: root/training/dtrain
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain')
-rw-r--r--training/dtrain/pairsampling.h14
1 files changed, 7 insertions, 7 deletions
diff --git a/training/dtrain/pairsampling.h b/training/dtrain/pairsampling.h
index 1a3c498c..fd08be8c 100644
--- a/training/dtrain/pairsampling.h
+++ b/training/dtrain/pairsampling.h
@@ -82,8 +82,8 @@ partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, scor
}
unsigned sep_lo = sz-sep;
while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo;
- for (unsigned i = sep_hi; i < sz-sep_lo; i++) {
- for (unsigned j = sz-sep_lo; j < sz; j++) {
+ for (unsigned i = sep_hi; i < sep_lo; i++) {
+ for (unsigned j = sep_lo; j < sz; j++) {
if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
if (threshold > 0) {
if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
@@ -100,9 +100,9 @@ partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, scor
/*
* pair sampling as in
* 'Tuning as Ranking' (Hopkins & May, 2011)
- * count = 5000
+ * count = max (5000)
* threshold = 5% BLEU (0.05 for param 3)
- * cut = top 50
+ * cut = top 10%
*/
bool
_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b)
@@ -113,7 +113,7 @@ inline void
PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0)
{
sort(s->begin(), s->end(), cmp_hyp_by_score_d);
- unsigned max_count = 5000, count = 0, sz = s->size();
+ unsigned max_count = max, count = 0, sz = s->size();
bool b = false;
for (unsigned i = 0; i < sz-1; i++) {
for (unsigned j = i+1; j < sz; j++) {
@@ -127,9 +127,9 @@ PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training,
}
if (b) break;
}
- if (training.size() > 50) {
+ if (training.size() > max/10) {
sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d);
- training.erase(training.begin()+50, training.end());
+ training.erase(training.begin()+(max/10), training.end());
}
return;
}