summaryrefslogtreecommitdiff
path: root/training/dtrain
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain')
-rw-r--r--training/dtrain/Makefile.am2
-rw-r--r--training/dtrain/dtrain.cc61
-rw-r--r--training/dtrain/dtrain.h100
-rw-r--r--training/dtrain/sample.h62
-rw-r--r--training/dtrain/score.cc292
-rw-r--r--training/dtrain/score.h136
6 files changed, 101 insertions, 552 deletions
diff --git a/training/dtrain/Makefile.am b/training/dtrain/Makefile.am
index 3c072ffc..7717ec86 100644
--- a/training/dtrain/Makefile.am
+++ b/training/dtrain/Makefile.am
@@ -1,6 +1,6 @@
bin_PROGRAMS = dtrain
-dtrain_SOURCES = dtrain.cc score.cc dtrain.h sample.h pairs.h score.h
+dtrain_SOURCES = dtrain.cc dtrain.h sample.h pairs.h score.h
dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a
AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 67e16d23..18addcb0 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -30,10 +30,9 @@ dtrain_init(int argc, char** argv, po::variables_map* conf)
("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)")
("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)")
("rescale", po::value<bool>()->zero_tokens(), "(re)scale data and weight vector to unit length")
- ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010)")
+ ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization with clipping as in 'Tsuroka et al' (2010)")
("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength")
("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPLEMENTED") // TODO
- ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU")
("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near")
("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.")
("pclr", po::value<string>()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate")
@@ -107,13 +106,11 @@ main(int argc, char** argv)
const unsigned N = conf["N"].as<unsigned>();
const unsigned T = conf["epochs"].as<unsigned>();
const unsigned stop_after = conf["stop_after"].as<unsigned>();
- const string filter_type = conf["filter"].as<string>();
const string pair_sampling = conf["pair_sampling"].as<string>();
const score_t pair_threshold = conf["pair_threshold"].as<score_t>();
const string select_weights = conf["select_weights"].as<string>();
const string output_ranking = conf["output_ranking"].as<string>();
const float hi_lo = conf["hi_lo"].as<float>();
- const score_t approx_bleu_d = conf["approx_bleu_d"].as<score_t>();
const unsigned max_pairs = conf["max_pairs"].as<unsigned>();
int repeat = conf["repeat"].as<unsigned>();
weight_t loss_margin = conf["loss_margin"].as<weight_t>();
@@ -136,39 +133,8 @@ main(int argc, char** argv)
cerr << setw(25) << "cdec conf " << "'" << conf["decoder_config"].as<string>() << "'" << endl;
Decoder decoder(ini_rf.stream());
- // scoring metric/scorer
- string scorer_str = conf["scorer"].as<string>();
- LocalScorer* scorer;
- if (scorer_str == "bleu") {
- scorer = static_cast<BleuScorer*>(new BleuScorer);
- } else if (scorer_str == "stupid_bleu") {
- scorer = static_cast<StupidBleuScorer*>(new StupidBleuScorer);
- } else if (scorer_str == "fixed_stupid_bleu") {
- scorer = static_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer);
- } else if (scorer_str == "smooth_bleu") {
- scorer = static_cast<SmoothBleuScorer*>(new SmoothBleuScorer);
- } else if (scorer_str == "sum_bleu") {
- scorer = static_cast<SumBleuScorer*>(new SumBleuScorer);
- } else if (scorer_str == "sumexp_bleu") {
- scorer = static_cast<SumExpBleuScorer*>(new SumExpBleuScorer);
- } else if (scorer_str == "sumwhatever_bleu") {
- scorer = static_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer);
- } else if (scorer_str == "approx_bleu") {
- scorer = static_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d));
- } else if (scorer_str == "lc_bleu") {
- scorer = static_cast<LinearBleuScorer*>(new LinearBleuScorer(N));
- } else {
- cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;
- exit(1);
- }
- vector<score_t> bleu_weights;
- scorer->Init(N, bleu_weights);
-
// setup decoder observer
- MT19937 rng; // random number generator, only for forest sampling
- HypSampler* observer;
- observer = static_cast<KBestGetter*>(new KBestGetter(k, filter_type));
- observer->SetScorer(scorer);
+ ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N));
// init weights
vector<weight_t>& decoder_weights = decoder.CurrentWeightVector();
@@ -222,10 +188,6 @@ main(int argc, char** argv)
cerr << setw(25) << "N " << N << endl;
cerr << setw(25) << "T " << T << endl;
cerr << setw(25) << "batch " << batch << endl;
- cerr << setw(26) << "scorer '" << scorer_str << "'" << endl;
- if (scorer_str == "approx_bleu")
- cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl;
- cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl;
cerr << setw(25) << "learning rate " << eta << endl;
cerr << setw(25) << "gamma " << gamma << endl;
cerr << setw(25) << "loss margin " << loss_margin << endl;
@@ -242,7 +204,6 @@ main(int argc, char** argv)
cerr << setw(25) << "pclr " << pclr << endl;
cerr << setw(25) << "max pairs " << max_pairs << endl;
cerr << setw(25) << "repeat " << repeat << endl;
- //cerr << setw(25) << "test k-best " << test_k_best << endl;
cerr << setw(25) << "cdec conf " << "'" << conf["decoder_config"].as<string>() << "'" << endl;
cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
@@ -321,13 +282,13 @@ main(int argc, char** argv)
vector<WordID> cur_ref;
vector<string> tok;
boost::split(tok, r, boost::is_any_of(" "));
- register_and_convert(tok, cur_ref);
+ RegisterAndConvert(tok, cur_ref);
cur_refs.push_back(cur_ref);
}
refs_as_ids_buf.push_back(cur_refs);
src_str_buf.push_back(in);
}
- observer->SetRef(refs_as_ids_buf[ii]);
+ observer->SetReference(refs_as_ids_buf[ii]);
if (t == 0)
decoder.Decode(in, observer);
else
@@ -341,7 +302,7 @@ main(int argc, char** argv)
stringstream ss;
for (auto s: *samples) {
ss << ii << " ||| ";
- printWordIDVec(s.w, ss);
+ PrintWordIDVec(s.w, ss);
ss << " ||| " << s.model << " ||| " << s.score << endl;
}
of.get() << ss.str();
@@ -350,12 +311,12 @@ main(int argc, char** argv)
if (verbose) {
cerr << "--- refs for " << ii << ": ";
for (auto r: refs_as_ids_buf[ii]) {
- printWordIDVec(r);
+ PrintWordIDVec(r);
cerr << endl;
}
for (unsigned u = 0; u < samples->size(); u++) {
cerr << _p2 << _np << "[" << u << ". '";
- printWordIDVec((*samples)[u].w);
+ PrintWordIDVec((*samples)[u].w);
cerr << "'" << endl;
cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl;
cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl;
@@ -367,8 +328,8 @@ main(int argc, char** argv)
model_sum += (*samples)[0].model;
}
- f_count += observer->get_f_count();
- list_sz += observer->get_sz();
+ f_count += observer->GetFeatureCount();
+ list_sz += observer->GetSize();
// weight updates
if (!noup) {
@@ -552,8 +513,6 @@ main(int argc, char** argv)
if (average) w_average += lambdas;
- if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset();
-
// print some stats
score_t score_avg = score_sum/(score_t)in_sz;
score_t model_avg = model_sum/(score_t)in_sz;
@@ -665,7 +624,7 @@ main(int argc, char** argv)
if (!quiet) {
cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
- cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl;
+ cerr << best_it+1 << " [SCORE = " << max_score << "]." << endl;
cerr << "This took " << overall_time/60. << " min." << endl;
}
}
diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h
index e25c6f24..2b466930 100644
--- a/training/dtrain/dtrain.h
+++ b/training/dtrain/dtrain.h
@@ -15,7 +15,6 @@
#include "decoder.h"
#include "ff_register.h"
-#include "sampler.h"
#include "sentence_metadata.h"
#include "verbose.h"
#include "viterbi.h"
@@ -26,113 +25,46 @@ namespace po = boost::program_options;
namespace dtrain
{
-
-inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids)
-{
- vector<string>::const_iterator it;
- for (it = strs.begin(); it < strs.end(); it++)
- ids.push_back(TD::Convert(*it));
-}
-
-inline string gettmpf(const string path, const string infix)
-{
- char fn[path.size() + infix.size() + 8];
- strcpy(fn, path.c_str());
- strcat(fn, "/");
- strcat(fn, infix.c_str());
- strcat(fn, "-XXXXXX");
- if (!mkstemp(fn)) {
- cerr << "Cannot make temp file in" << path << " , exiting." << endl;
- exit(1);
- }
- return string(fn);
-}
-
typedef double score_t;
struct ScoredHyp
{
vector<WordID> w;
- SparseVector<double> f;
- score_t model;
- score_t score;
+ SparseVector<weight_t> f;
+ score_t model, score;
unsigned rank;
};
-struct LocalScorer
+inline void
+RegisterAndConvert(const vector<string>& strs, vector<WordID>& ids)
{
- unsigned N_;
- vector<score_t> w_;
-
- virtual score_t
- Score(const vector<WordID>& hyp, const vector<vector<WordID> >& ref, const unsigned rank, const unsigned src_len)=0;
-
- virtual void Reset() {} // only for ApproxBleuScorer, LinearBleuScorer
-
- inline void
- Init(unsigned N, vector<score_t> weights)
- {
- assert(N > 0);
- N_ = N;
- if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_);
- else w_ = weights;
- }
-
- inline score_t
- brevity_penalty(const unsigned hyp_len, const unsigned ref_len)
- {
- if (hyp_len > ref_len) return 1;
- return exp(1 - (score_t)ref_len/hyp_len);
- }
-};
-
-struct HypSampler : public DecoderObserver
-{
- LocalScorer* scorer_;
- vector<vector<WordID> >* refs_;
- unsigned f_count_, sz_;
- virtual vector<ScoredHyp>* GetSamples()=0;
- inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; }
- inline void SetRef(vector<vector<WordID> >& refs) { refs_ = &refs; }
- inline unsigned get_f_count() { return f_count_; }
- inline unsigned get_sz() { return sz_; }
-};
+ vector<string>::const_iterator it;
+ for (auto s: strs)
+ ids.push_back(TD::Convert(s));
+}
-struct HSReporter
+inline void
+PrintWordIDVec(vector<WordID>& v, ostream& os=cerr)
{
- string task_id_;
-
- HSReporter(string task_id) : task_id_(task_id) {}
-
- inline void update_counter(string name, unsigned amount) {
- cerr << "reporter:counter:" << task_id_ << "," << name << "," << amount << endl;
- }
- inline void update_gcounter(string name, unsigned amount) {
- cerr << "reporter:counter:Global," << name << "," << amount << endl;
+ for (unsigned i = 0; i < v.size(); i++) {
+ os << TD::Convert(v[i]);
+ if (i < v.size()-1) os << " ";
}
-};
+}
inline ostream& _np(ostream& out) { return out << resetiosflags(ios::showpos); }
inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); }
inline ostream& _p2(ostream& out) { return out << setprecision(2); }
inline ostream& _p5(ostream& out) { return out << setprecision(5); }
-inline void printWordIDVec(vector<WordID>& v, ostream& os=cerr)
-{
- for (unsigned i = 0; i < v.size(); i++) {
- os << TD::Convert(v[i]);
- if (i < v.size()-1) os << " ";
- }
-}
-
template<typename T>
-inline T sign(T z)
+inline T
+sign(T z)
{
if (z == 0) return 0;
return z < 0 ? -1 : +1;
}
-
} // namespace
#endif
diff --git a/training/dtrain/sample.h b/training/dtrain/sample.h
index 25f02273..64d93cb0 100644
--- a/training/dtrain/sample.h
+++ b/training/dtrain/sample.h
@@ -1,5 +1,5 @@
-#ifndef _DTRAIN_KBESTGET_H_
-#define _DTRAIN_KBESTGET_H_
+#ifndef _DTRAIN_SAMPLE_H_
+#define _DTRAIN_SAMPLE_H_
#include "kbest.h"
@@ -7,78 +7,46 @@ namespace dtrain
{
-struct KBestGetter : public HypSampler
+struct ScoredKbest : public DecoderObserver
{
const unsigned k_;
- const string filter_type_;
vector<ScoredHyp> s_;
unsigned src_len_;
+ PerSentenceBleuScorer* scorer_;
+ vector<vector<WordID> >* refs_;
+ unsigned f_count_, sz_;
- KBestGetter(const unsigned k, const string filter_type) :
- k_(k), filter_type_(filter_type) {}
+ ScoredKbest(const unsigned k, PerSentenceBleuScorer* scorer) :
+ k_(k), scorer_(scorer) {}
virtual void
NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
{
src_len_ = smeta.GetSourceLength();
- KBestScored(*hg);
- }
-
- vector<ScoredHyp>* GetSamples() { return &s_; }
-
- void
- KBestScored(const Hypergraph& forest)
- {
- if (filter_type_ == "uniq") {
- KBestUnique(forest);
- } else if (filter_type_ == "not") {
- KBestNoFilter(forest);
- }
- }
-
- void
- KBestUnique(const Hypergraph& forest)
- {
s_.clear(); sz_ = f_count_ = 0;
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
- KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_);
+ KBest::FilterUnique, prob_t, EdgeProb> kbest(*hg, k_);
for (unsigned i = 0; i < k_; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique,
prob_t, EdgeProb>::Derivation* d =
- kbest.LazyKthBest(forest.nodes_.size() - 1, i);
+ kbest.LazyKthBest(hg->nodes_.size() - 1, i);
if (!d) break;
ScoredHyp h;
h.w = d->yield;
h.f = d->feature_values;
h.model = log(d->score);
h.rank = i;
- h.score = scorer_->Score(h.w, *refs_, i, src_len_);
+ h.score = scorer_->Score(h.w, *refs_);
s_.push_back(h);
sz_++;
f_count_ += h.f.size();
}
}
- void
- KBestNoFilter(const Hypergraph& forest)
- {
- s_.clear(); sz_ = f_count_ = 0;
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_);
- for (unsigned i = 0; i < k_; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
- kbest.LazyKthBest(forest.nodes_.size() - 1, i);
- if (!d) break;
- ScoredHyp h;
- h.w = d->yield;
- h.f = d->feature_values;
- h.model = log(d->score);
- h.rank = i;
- h.score = scorer_->Score(h.w, *refs_, i, src_len_);
- s_.push_back(h);
- sz_++;
- f_count_ += h.f.size();
- }
- }
+ vector<ScoredHyp>* GetSamples() { return &s_; }
+ inline void SetReference(vector<vector<WordID> >& refs) { refs_ = &refs; }
+ inline unsigned GetFeatureCount() { return f_count_; }
+ inline unsigned GetSize() { return sz_; }
};
diff --git a/training/dtrain/score.cc b/training/dtrain/score.cc
deleted file mode 100644
index 8a28771f..00000000
--- a/training/dtrain/score.cc
+++ /dev/null
@@ -1,292 +0,0 @@
-#include "score.h"
-
-namespace dtrain
-{
-
-
-/*
- * bleu
- *
- * as in "BLEU: a Method for Automatic Evaluation
- * of Machine Translation"
- * (Papineni et al. '02)
- *
- * NOTE: 0 if for one n \in {1..N} count is 0
- */
-score_t
-BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len)
-{
- if (hyp_len == 0 || ref_len == 0) return 0.;
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
- }
- score_t sum = 0;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) return 0.;
- sum += v[i] * log((score_t)counts.clipped_[i]/counts.sum_[i]);
- }
- return brevity_penalty(hyp_len, ref_len) * exp(sum);
-}
-
-size_t
-RefLen(vector<vector<WordID> > refs)
-{
- size_t ref_len = 0;
- for (auto r: refs)
- ref_len = max(ref_len, r.size()); // FIXME
- return ref_len;
-}
-
-score_t
-BleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, refs, N_);
- return Bleu(counts, hyp_len, ref_len);
-}
-
-/*
- * 'stupid' bleu
- *
- * as in "ORANGE: a Method for Evaluating
- * Automatic Evaluation Metrics
- * for Machine Translation"
- * (Lin & Och '04)
- *
- * NOTE: 0 iff no 1gram match ('grounded')
- */
-score_t
-StupidBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, refs, N_);
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
- }
- score_t sum = 0, add = 0;
- for (unsigned i = 0; i < M; i++) {
- if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
- if (i == 1) add = 1;
- sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
- }
- return brevity_penalty(hyp_len, ref_len) * exp(sum);
-}
-
-/*
- * fixed 'stupid' bleu
- *
- * as in "Optimizing for Sentence-Level BLEU+1
- * Yields Short Translations"
- * (Nakov et al. '12)
- */
-score_t
-FixedStupidBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, refs, N_);
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
- }
- score_t sum = 0, add = 0;
- for (unsigned i = 0; i < M; i++) {
- if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
- if (i == 1) add = 1;
- sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
- }
- return brevity_penalty(hyp_len, ref_len+1) * exp(sum); // <- fix
-}
-
-/*
- * smooth bleu
- *
- * as in "An End-to-End Discriminative Approach
- * to Machine Translation"
- * (Liang et al. '06)
- *
- * NOTE: max is 0.9375 (with N=4)
- */
-score_t
-SmoothBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, refs, N_);
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- score_t sum = 0.;
- vector<score_t> i_bleu;
- for (unsigned i = 0; i < M; i++) i_bleu.push_back(0.);
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) {
- break;
- } else {
- score_t i_ng = log((score_t)counts.clipped_[i]/counts.sum_[i]);
- for (unsigned j = i; j < M; j++) {
- i_bleu[j] += (1/((score_t)j+1)) * i_ng;
- }
- }
- sum += exp(i_bleu[i])/pow(2.0, (double)(N_-i));
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * 'sum' bleu
- *
- * sum up Ngram precisions
- */
-score_t
-SumBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, refs, N_);
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- score_t sum = 0.;
- unsigned j = 1;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
- sum += ((score_t)counts.clipped_[i]/counts.sum_[i])/pow(2.0, (double) (N_-j+1));
- j++;
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * 'sum' (exp) bleu
- *
- * sum up exp(Ngram precisions)
- */
-score_t
-SumExpBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, refs, N_);
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- score_t sum = 0.;
- unsigned j = 1;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
- sum += exp(((score_t)counts.clipped_[i]/counts.sum_[i]))/pow(2.0, (double) (N_-j+1));
- j++;
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * 'sum' (whatever) bleu
- *
- * sum up exp(weight * log(Ngram precisions))
- */
-score_t
-SumWhateverBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, refs, N_);
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
- }
- score_t sum = 0.;
- unsigned j = 1;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
- sum += exp(v[i] * log(((score_t)counts.clipped_[i]/counts.sum_[i])))/pow(2.0, (double) (N_-j+1));
- j++;
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * approx. bleu
- *
- * as in "Online Large-Margin Training of Syntactic
- * and Structural Translation Features"
- * (Chiang et al. '08)
- *
- * NOTE: Needs some more code in dtrain.cc .
- * No scaling by src len.
- */
-score_t
-ApproxBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned rank, const unsigned src_len)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (ref_len == 0) return 0.;
- score_t score = 0.;
- NgramCounts counts(N_);
- if (hyp_len > 0) {
- counts = make_ngram_counts(hyp, refs, N_);
- NgramCounts tmp = glob_onebest_counts_ + counts;
- score = Bleu(tmp, hyp_len, ref_len);
- }
- if (rank == 0) { // 'context of 1best translations'
- glob_onebest_counts_ += counts;
- glob_onebest_counts_ *= discount_;
- glob_hyp_len_ = discount_ * (glob_hyp_len_ + hyp_len);
- glob_ref_len_ = discount_ * (glob_ref_len_ + ref_len);
- glob_src_len_ = discount_ * (glob_src_len_ + src_len);
- }
- return score;
-}
-
-/*
- * Linear (Corpus) Bleu
- *
- * as in "Lattice Minimum Bayes-Risk Decoding
- * for Statistical Machine Translation"
- * (Tromble et al. '08)
- *
- */
-score_t
-LinearBleuScorer::Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs,
- const unsigned rank, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = RefLen(refs);
- if (ref_len == 0) return 0.;
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- NgramCounts counts(M);
- if (hyp_len > 0)
- counts = make_ngram_counts(hyp, refs, M);
- score_t ret = 0.;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || onebest_counts_.sum_[i] == 0) break;
- ret += counts.sum_[i]/onebest_counts_.sum_[i];
- }
- ret = -(hyp_len/(score_t)onebest_len_) + (1./M) * ret;
- if (rank == 0) {
- onebest_len_ += hyp_len;
- onebest_counts_ += counts;
- }
- return ret;
-}
-
-
-} // namespace
-
diff --git a/training/dtrain/score.h b/training/dtrain/score.h
index 62d8f587..c727dd30 100644
--- a/training/dtrain/score.h
+++ b/training/dtrain/score.h
@@ -6,7 +6,6 @@
namespace dtrain
{
-
struct NgramCounts
{
unsigned N_;
@@ -30,6 +29,7 @@ struct NgramCounts
{
NgramCounts result = *this;
result += other;
+
return result;
}
@@ -102,7 +102,7 @@ struct NgramCounts
typedef map<vector<WordID>, unsigned> Ngrams;
inline Ngrams
-make_ngrams(const vector<WordID>& s, const unsigned N)
+MakeNgrams(const vector<WordID>& s, const unsigned N)
{
Ngrams ngrams;
vector<WordID> ng;
@@ -113,21 +113,21 @@ make_ngrams(const vector<WordID>& s, const unsigned N)
ngrams[ng]++;
}
}
+
return ngrams;
}
inline NgramCounts
-make_ngram_counts(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned N)
+MakeNgramCounts(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned N)
{
- Ngrams hyp_ngrams = make_ngrams(hyp, N);
+ Ngrams hyp_ngrams = MakeNgrams(hyp, N);
vector<Ngrams> refs_ngrams;
for (auto r: refs) {
- Ngrams r_ng = make_ngrams(r, N);
+ Ngrams r_ng = MakeNgrams(r, N);
refs_ngrams.push_back(r_ng);
}
NgramCounts counts(N);
- Ngrams::iterator it;
- Ngrams::iterator ti;
+ Ngrams::iterator it, ti;
for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) {
unsigned max_ref_count = 0;
for (auto ref_ngrams: refs_ngrams) {
@@ -137,90 +137,72 @@ make_ngram_counts(const vector<WordID>& hyp, const vector<vector<WordID> >& refs
}
counts.Add(it->second, min(it->second, max_ref_count), it->first.size() - 1);
}
+
return counts;
}
-struct BleuScorer : public LocalScorer
-{
- score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len);
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
-
-struct StupidBleuScorer : public LocalScorer
-{
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
-
-struct FixedStupidBleuScorer : public LocalScorer
+/*
+ * per-sentence BLEU
+ * as in "Optimizing for Sentence-Level BLEU+1
+ * Yields Short Translations"
+ * (Nakov et al. '12)
+ *
+ * [simply add 1 to reference length for calculation of BP]
+ *
+ */
+
+struct PerSentenceBleuScorer
{
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
-
-struct SmoothBleuScorer : public LocalScorer
-{
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
-
-struct SumBleuScorer : public LocalScorer
-{
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
-
-struct SumExpBleuScorer : public LocalScorer
-{
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {}
-};
+ const unsigned N_;
+ vector<score_t> w_;
-struct SumWhateverBleuScorer : public LocalScorer
-{
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned /*rank*/, const unsigned /*src_len*/);
- void Reset() {};
-};
-
-struct ApproxBleuScorer : public BleuScorer
-{
- NgramCounts glob_onebest_counts_;
- unsigned glob_hyp_len_, glob_ref_len_, glob_src_len_;
- score_t discount_;
-
- ApproxBleuScorer(unsigned N, score_t d) : glob_onebest_counts_(NgramCounts(N)), discount_(d)
+ PerSentenceBleuScorer(unsigned n) : N_(n)
{
- glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0;
+ for (auto i = 1; i <= N_; i++)
+ w_.push_back(1.0/N_);
}
- inline void Reset() {
- glob_onebest_counts_.Zero();
- glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0.;
- }
-
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned rank, const unsigned src_len);
-};
-
-struct LinearBleuScorer : public BleuScorer
-{
- unsigned onebest_len_;
- NgramCounts onebest_counts_;
-
- LinearBleuScorer(unsigned N) : onebest_len_(1), onebest_counts_(N)
+ inline score_t
+ BrevityPenalty(const unsigned hyp_len, const unsigned ref_len)
{
- onebest_counts_.One();
+ if (hyp_len > ref_len) return 1;
+ return exp(1 - (score_t)ref_len/hyp_len);
}
- score_t Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs, const unsigned rank, const unsigned /*src_len*/);
-
- inline void Reset() {
- onebest_len_ = 1;
- onebest_counts_.One();
+ score_t
+ Score(const vector<WordID>& hyp, const vector<vector<WordID> >& refs)
+ {
+ unsigned hyp_len = hyp.size(), ref_len = 0;
+ // best match reference length
+ if (refs.size() == 1) {
+ ref_len = refs[0].size();
+ } else {
+ unsigned i = 0, best_idx = 0;
+ unsigned best = std::numeric_limits<unsigned>::max();
+ for (auto r: refs) {
+ unsigned d = abs(hyp_len-r.size());
+ if (best > d) best_idx = i;
+ }
+ ref_len = refs[best_idx].size();
+ }
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = MakeNgramCounts(hyp, refs, N_);
+ unsigned M = N_;
+ vector<score_t> v = w_;
+ if (ref_len < N_) {
+ M = ref_len;
+ for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
+ }
+ score_t sum = 0, add = 0;
+ for (unsigned i = 0; i < M; i++) {
+ if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
+ if (i == 1) add = 1;
+ sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
+ }
+ return BrevityPenalty(hyp_len, ref_len+1) * exp(sum);
}
};
-
} // namespace
#endif