diff options
Diffstat (limited to 'training/dtrain/examples')
| -rw-r--r-- | training/dtrain/examples/standard/dtrain.ini | 24 | ||||
| -rw-r--r-- | training/dtrain/examples/standard/expected-output | 84 | 
2 files changed, 54 insertions, 54 deletions
| diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini index e1072d30..23e94285 100644 --- a/training/dtrain/examples/standard/dtrain.ini +++ b/training/dtrain/examples/standard/dtrain.ini @@ -10,15 +10,15 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr  stop_after=10 # stop epoch after 10 inputs  # interesting stuff -epochs=2                # run over input 2 times -k=100                   # use 100best lists -N=4                     # optimize (approx) BLEU4 -scorer=stupid_bleu      # use 'stupid' BLEU+1 -learning_rate=1.0       # learning rate, don't care if gamma=0 (perceptron) -gamma=0                 # use SVM reg -sample_from=kbest       # use kbest lists (as opposed to forest) -filter=uniq             # only unique entries in kbest (surface form) -pair_sampling=XYX       # -hi_lo=0.1               # 10 vs 80 vs 10 and 80 vs 10 here -pair_threshold=0        # minimum distance in BLEU (here: > 0) -loss_margin=0           # update if correctly ranked, but within this margin +epochs=2                 # run over input 2 times +k=100                    # use 100best lists +N=4                      # optimize (approx) BLEU4 +scorer=fixed_stupid_bleu # use 'stupid' BLEU+1 +learning_rate=1.0        # learning rate, don't care if gamma=0 (perceptron) +gamma=0                  # use SVM reg +sample_from=kbest        # use kbest lists (as opposed to forest) +filter=uniq              # only unique entries in kbest (surface form) +pair_sampling=XYX        # +hi_lo=0.1                # 10 vs 80 vs 10 and 80 vs 10 here +pair_threshold=0         # minimum distance in BLEU (here: > 0) +loss_margin=0            # update if correctly ranked, but within this margin diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output index 7cd09dbf..9a25062b 100644 --- a/training/dtrain/examples/standard/expected-output +++ b/training/dtrain/examples/standard/expected-output @@ -4,14 +4,14 @@ Reading ./nc-wmt11.en.srilm.gz  ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100  ****************************************************************************************************    Example feature: Shape_S00000_T00000 -Seeding random number sequence to 2679584485 +Seeding random number sequence to 1677737427  dtrain  Parameters:                         k 100                         N 4                         T 2 -                  scorer 'stupid_bleu' +                  scorer 'fixed_stupid_bleu'               sample from 'kbest'                    filter 'uniq'             learning rate 1 @@ -34,58 +34,58 @@ Iteration #1 of 2.   . 10  Stopping after 10 input sentences.  WEIGHTS -              Glue = -576 -       WordPenalty = +417.79 -     LanguageModel = +5117.5 - LanguageModel_OOV = -1307 -     PhraseModel_0 = -1612 -     PhraseModel_1 = -2159.6 -     PhraseModel_2 = -677.36 -     PhraseModel_3 = +2663.8 -     PhraseModel_4 = -1025.9 -     PhraseModel_5 = -8 -     PhraseModel_6 = +70 -       PassThrough = -1455 +              Glue = -1155 +       WordPenalty = -329.63 +     LanguageModel = +3903 + LanguageModel_OOV = -1630 +     PhraseModel_0 = +2746.9 +     PhraseModel_1 = +1200.3 +     PhraseModel_2 = -1004.1 +     PhraseModel_3 = +2223.1 +     PhraseModel_4 = +551.58 +     PhraseModel_5 = +217 +     PhraseModel_6 = +1816 +       PassThrough = -1603          --- -       1best avg score: 0.27697 (+0.27697) - 1best avg model score: -47918 (-47918) -           avg # pairs: 581.9 (meaningless) -        avg # rank err: 581.9 +       1best avg score: 0.19344 (+0.19344) + 1best avg model score: 81387 (+81387) +           avg # pairs: 616.3 (meaningless) +        avg # rank err: 616.3       avg # margin viol: 0 -    non0 feature count: 703 +    non0 feature count: 673             avg list sz: 90.9 -           avg f count: 100.09 -(time 0.25 min, 1.5 s/S) +           avg f count: 104.26 +(time 0.38 min, 2.3 s/S)  Iteration #2 of 2.   . 10  WEIGHTS -              Glue = -622 -       WordPenalty = +898.56 -     LanguageModel = +8066.2 - LanguageModel_OOV = -2590 -     PhraseModel_0 = -4335.8 -     PhraseModel_1 = -5864.4 -     PhraseModel_2 = -1729.8 -     PhraseModel_3 = +2831.9 -     PhraseModel_4 = -5384.8 -     PhraseModel_5 = +1449 -     PhraseModel_6 = +480 -       PassThrough = -2578 +              Glue = -994 +       WordPenalty = -778.69 +     LanguageModel = +2348.9 + LanguageModel_OOV = -1967 +     PhraseModel_0 = -412.72 +     PhraseModel_1 = +1428.9 +     PhraseModel_2 = +1967.4 +     PhraseModel_3 = -944.99 +     PhraseModel_4 = -239.7 +     PhraseModel_5 = +708 +     PhraseModel_6 = +645 +       PassThrough = -1866          --- -       1best avg score: 0.37119 (+0.094226) - 1best avg model score: -1.3174e+05 (-83822) -           avg # pairs: 584.1 (meaningless) -        avg # rank err: 584.1 +       1best avg score: 0.22395 (+0.03051) + 1best avg model score: -31388 (-1.1278e+05) +           avg # pairs: 702.3 (meaningless) +        avg # rank err: 702.3       avg # margin viol: 0 -    non0 feature count: 1115 +    non0 feature count: 955             avg list sz: 91.3 -           avg f count: 90.755 -(time 0.3 min, 1.8 s/S) +           avg f count: 103.45 +(time 0.32 min, 1.9 s/S)  Writing weights file to '-' ...  done  --- -Best iteration: 2 [SCORE 'stupid_bleu'=0.37119]. -This took 0.55 min. +Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.22395]. +This took 0.7 min. | 
