diff options
Diffstat (limited to 'training/dtrain/examples')
| -rw-r--r-- | training/dtrain/examples/standard/dtrain.ini | 2 | ||||
| -rw-r--r-- | training/dtrain/examples/standard/expected-output | 112 | 
2 files changed, 59 insertions, 55 deletions
| diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini index ef022469..fc83f08e 100644 --- a/training/dtrain/examples/standard/dtrain.ini +++ b/training/dtrain/examples/standard/dtrain.ini @@ -15,7 +15,7 @@ epochs=3                 # run over input 3 times  k=100                    # use 100best lists  N=4                      # optimize (approx) BLEU4  scorer=fixed_stupid_bleu # use 'stupid' BLEU+1 -learning_rate=0.0001     # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron) +learning_rate=0.1        # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)  gamma=0                  # use SVM reg  sample_from=kbest        # use kbest lists (as opposed to forest)  filter=uniq              # only unique entries in kbest (surface form) diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output index a35bbe6f..75f47337 100644 --- a/training/dtrain/examples/standard/expected-output +++ b/training/dtrain/examples/standard/expected-output @@ -4,17 +4,18 @@ Reading ./nc-wmt11.en.srilm.gz  ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100  ****************************************************************************************************    Example feature: Shape_S00000_T00000 -Seeding random number sequence to 4049211323 +Seeding random number sequence to 3751911392  dtrain  Parameters:                         k 100                         N 4                         T 3 +                   batch 0                    scorer 'fixed_stupid_bleu'               sample from 'kbest'                    filter 'uniq' -           learning rate 1 +           learning rate 0.1                     gamma 0               loss margin 0         faster perceptron 1 @@ -25,9 +26,9 @@ Parameters:                    l1 reg 0 'none'                      pclr no                 max pairs 4294967295 +                  repeat 1                  cdec cfg './cdec.ini' -                   input './nc-wmt11.de.gz' -                    refs './nc-wmt11.en.gz' +                   input './nc-wmt11.gz'                    output '-'                stop_after 10  (a dot represents 10 inputs) @@ -35,25 +36,26 @@ Iteration #1 of 3.   . 10  Stopping after 10 input sentences.  WEIGHTS -              Glue = -1100 -       WordPenalty = -82.082 -     LanguageModel = -3199.1 - LanguageModel_OOV = -192 -     PhraseModel_0 = +3128.2 -     PhraseModel_1 = -1610.2 -     PhraseModel_2 = -4336.5 -     PhraseModel_3 = +2910.3 -     PhraseModel_4 = +2523.2 -     PhraseModel_5 = +506 -     PhraseModel_6 = +1467 -       PassThrough = -387 +              Glue = -110 +       WordPenalty = -8.2082 +     LanguageModel = -319.91 + LanguageModel_OOV = -19.2 +     PhraseModel_0 = +312.82 +     PhraseModel_1 = -161.02 +     PhraseModel_2 = -433.65 +     PhraseModel_3 = +291.03 +     PhraseModel_4 = +252.32 +     PhraseModel_5 = +50.6 +     PhraseModel_6 = +146.7 +       PassThrough = -38.7          ---         1best avg score: 0.16966 (+0.16966) - 1best avg model score: 2.9874e+05 (+2.9874e+05) -           avg # pairs: 906.3 (meaningless) -        avg # rank err: 906.3 + 1best avg model score: 29874 (+29874) +           avg # pairs: 906.3 +        avg # rank err: 0 (meaningless)       avg # margin viol: 0 -    non0 feature count: 825 +       k-best loss imp: 100% +    non0 feature count: 832             avg list sz: 91.3             avg f count: 139.77  (time 0.35 min, 2.1 s/S) @@ -61,25 +63,26 @@ WEIGHTS  Iteration #2 of 3.   . 10  WEIGHTS -              Glue = -1221 -       WordPenalty = +836.89 -     LanguageModel = +2332.3 - LanguageModel_OOV = -1451 -     PhraseModel_0 = +1507.2 -     PhraseModel_1 = -2728.4 -     PhraseModel_2 = -4183.6 -     PhraseModel_3 = +1816.3 -     PhraseModel_4 = -2894.7 -     PhraseModel_5 = +1403 -     PhraseModel_6 = +35 -       PassThrough = -1097 +              Glue = -122.1 +       WordPenalty = +83.689 +     LanguageModel = +233.23 + LanguageModel_OOV = -145.1 +     PhraseModel_0 = +150.72 +     PhraseModel_1 = -272.84 +     PhraseModel_2 = -418.36 +     PhraseModel_3 = +181.63 +     PhraseModel_4 = -289.47 +     PhraseModel_5 = +140.3 +     PhraseModel_6 = +3.5 +       PassThrough = -109.7          ---         1best avg score: 0.17399 (+0.004325) - 1best avg model score: 49369 (-2.4937e+05) -           avg # pairs: 662.4 (meaningless) -        avg # rank err: 662.4 + 1best avg model score: 4936.9 (-24937) +           avg # pairs: 662.4 +        avg # rank err: 0 (meaningless)       avg # margin viol: 0 -    non0 feature count: 1235 +       k-best loss imp: 100% +    non0 feature count: 1240             avg list sz: 91.3             avg f count: 125.11  (time 0.27 min, 1.6 s/S) @@ -87,32 +90,33 @@ WEIGHTS  Iteration #3 of 3.   . 10  WEIGHTS -              Glue = -1574 -       WordPenalty = -17.372 -     LanguageModel = +6861.8 - LanguageModel_OOV = -3997 -     PhraseModel_0 = -398.76 -     PhraseModel_1 = -3419.6 -     PhraseModel_2 = -3186.7 -     PhraseModel_3 = +1050.8 -     PhraseModel_4 = -2902.7 -     PhraseModel_5 = -486 -     PhraseModel_6 = -436 -       PassThrough = -2985 +              Glue = -157.4 +       WordPenalty = -1.7372 +     LanguageModel = +686.18 + LanguageModel_OOV = -399.7 +     PhraseModel_0 = -39.876 +     PhraseModel_1 = -341.96 +     PhraseModel_2 = -318.67 +     PhraseModel_3 = +105.08 +     PhraseModel_4 = -290.27 +     PhraseModel_5 = -48.6 +     PhraseModel_6 = -43.6 +       PassThrough = -298.5          ---         1best avg score: 0.30742 (+0.13343) - 1best avg model score: -1.5393e+05 (-2.0329e+05) -           avg # pairs: 623.8 (meaningless) -        avg # rank err: 623.8 + 1best avg model score: -15393 (-20329) +           avg # pairs: 623.8 +        avg # rank err: 0 (meaningless)       avg # margin viol: 0 -    non0 feature count: 1770 +       k-best loss imp: 100% +    non0 feature count: 1776             avg list sz: 91.3             avg f count: 118.58 -(time 0.25 min, 1.5 s/S) +(time 0.28 min, 1.7 s/S)  Writing weights file to '-' ...  done  ---  Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742]. -This took 0.86667 min. +This took 0.9 min. | 
