summaryrefslogtreecommitdiff
path: root/report
diff options
context:
space:
mode:
Diffstat (limited to 'report')
-rw-r--r--report/np_clustering.tex64
-rw-r--r--report/pyp_clustering/bleu_condentropy.R5
-rw-r--r--report/pyp_clustering/bleu_condentropy.dat13
-rw-r--r--report/pyp_clustering/correl.pdf215
4 files changed, 277 insertions, 20 deletions
diff --git a/report/np_clustering.tex b/report/np_clustering.tex
index 439bfdbe..da564508 100644
--- a/report/np_clustering.tex
+++ b/report/np_clustering.tex
@@ -64,8 +64,8 @@ The final sample drawn from the model was used to estimate $p(z|\textbf{c},\p)$,
\begin{figure}
\begin{center}
-\includegraphics[scale=0.75]{pyp_clustering/llh.pdf}
-\vspace{-0.3cm}
+\includegraphics[scale=0.5]{pyp_clustering/llh.pdf}
+\vspace{-0.7cm}
\end{center}
\caption{Log-likelihood versus number of samples with 10 categories (red circles) and 25 categories (blue diamonds) on the Urdu data, 1 target word on either side, hierarchical $\theta_0$, uniform $\phi_0$.}
\label{fig:llh}
@@ -99,7 +99,7 @@ Num. references & 16 & 4
\label{tab:corpbtecur}
\end{table}%
-\subsection{Features used}
+\subsection{Translation system features}
In addition to the language model and word penalty, we made use of the following features to score each rule $\textrm{Y} \rightarrow \langle \textbf{f},\textbf{e} \rangle$ used in a derivation. Some features are meaningful only in the context of multi-category grammars.
@@ -116,11 +116,13 @@ In addition to the language model and word penalty, we made use of the following
\noindent The above feature weights were tuned using the minimum error rate training algorithm (\textsc{mert}), to optimize the 1-best \textsc{bleu} on a held-out development set.
-\subsection{Baseline and benchmark systems}
+\subsection{Baseline and supervised benchmark systems}
-We provide two baseline systems: a single-category system constructed using the procedure described by \cite{chiang:2007} and a system constructed by assigning categories to each phrasal occurrence in the training data. Additionally, we provide a benchmark system using supervised English (target) language parse trees \citep{samt}. Table~\ref{tab:npbaselines} summarizes these baseline conditions.
+We provide a number of baselines to compare our unsupervised syntax systems against. The most important is a single-category system constructed using the procedure described by \cite{chiang:2007} The single-category baseline represents the current state-of-the-art for systems that do not utilize supervised syntax or syntax proxies (like POS tags or syntactic chunks). The random category baselines are provided to give an indication of how a poorly induced syntactic system (for a given $K$) would perform.
-\begin{table}[h]
+Additionally, we also provide two benchmark systems that use a more sensible set of nonterminal categories. The first uses supervised English (target) language parse trees to annotate the phrases in the grammar as proposed by \cite{samt}. The second (labeled Target POS-only) uses the target language part-of-speech tag for all rules that generate only a single terminal symbol in the target language, and the symbol X otherwise.
+
+\begin{table}
\caption{Baseline systems}
\begin{center}
\begin{tabular}{r|c|c}
@@ -133,16 +135,18 @@ Random ($K=25$) & 55.4 & 19.7 \\
Random ($K=50$) & 55.3 & 19.6 \\
\hline
Supervised \citep{samt} & 57.8 & 24.5 \\
-POS-only & 56.2 & 22.3 \\
+Target POS-only ({\emph supervised}) & 56.2 & 22.2 \\
\end{tabular}
\end{center}
\label{tab:npbaselines}
\end{table}%
-Because the margin of improvement from the 1-category baseline to the supervised condition is much more substantial in the Urdu-English condition than in the BTEC condition, some experiments were only carried out on Urdu.
-
\subsection{Number of categories}
+The number of categories, $K$, is a free parameter in our nonparametric clustering model. In this section, we report results exploring the effect of $K$ on translation quality on the BTEC and Urdu translation tasks.
+
+Preliminary experiments indicated that single word (to the left and right) target language contexts learned with with a uniform $\phi_0$ and a hierarchical $\theta_0$ produced useful clusters for translation, so we used this as the definition of the context for this experiment. Table~\ref{tab:npvaryk} summarizes the affect of varying $K$ using a single word of target language context, using a uniform $\phi_0$ and a hierarchical $\theta_0$.
+
\begin{table}[h]
\caption{Effect of varying $K$, single word left and right target language context, uniform $\phi_0$, hierarchical $\theta_0$.}
\begin{center}
@@ -152,33 +156,53 @@ Because the margin of improvement from the 1-category baseline to the supervised
Single category (baseline) & 57.0 & 21.1 \\
\hline
$K=10$ & 56.4 & 21.2 \\
-$K=25$ & 57.5 & 22.0 \\
-$K=50$ & 56.2 & \\
+$K=25$ & \textbf{57.5} & \textbf{22.0} \\
+$K=50$ & 56.2 & 21.4 \\
\end{tabular}
\end{center}
-\label{tab:npbaselines}
+\label{tab:npvaryk}
\end{table}%
\subsection{Context types}
+Because the margin of improvement from the 1-category baseline to the supervised condition is much more substantial in the Urdu-English condition than in the BTEC condition, the experiments in this section were carried out only on Urdu.
+
+
\begin{table}[h]
-\caption{Effect of varying the context definition and/or smoothing, $K=25$, hierarchical $\theta_0$.}
+\caption{Effect of varying the context definition and/or smoothing, $K=25$, hierarchical $\theta_0$; best results in bold. Baseline and benchmark systems also included for reference.}
\begin{center}
-\begin{tabular}{r|c|c}
-& BTEC & Urdu \\
+\begin{tabular}{r|c|c|c|c}
+Context Type & $|\textbf{c}|/2$ & $\phi_0$ & \textsc{bleu} & $H(S|Z)$ \\
\hline
-Single category (baseline) & 57.0 & 21.1 \\
+Baseline ($K=1$) & -- & -- & 20.9 & 4.49 \\
+\hline
+Source word & 1 & uniform & 21.7 & 3.25 \\
+Source word class & 1 & uniform & 20.4 & 3.03 \\
+Target word & 1 & uniform & 22.0 & 2.86 \\
+Target word class & 1 & uniform & \textbf{22.3} & \textbf{2.27} \\
+Source word & 2 & 1-word backoff & 21.3 & 3.41 \\
+Source word class & 2 & 1-class backoff & & 4.20 \\
+Target word & 2 & 1-word backoff & 20.8 & 3.16 \\
+Target word class & 2 & 1-class backoff & 20.1 & 4.06 \\
\hline
-1-word target & & \\
-1-word source & & \\
-2-words target & & \\
-2-words source & & \\
+Supervised \citep{samt} & -- & -- & 24.6 & 0 \\
+Target POS-only ({\emph supervised}) & 1 & uniform & 22.2 & 1.85 \\
\end{tabular}
\end{center}
\label{tab:npbaselines}
\end{table}%
+\subsection{Correlating the intrinsic metric}
+
+\begin{figure}
+\begin{center}
+\includegraphics[scale=0.5]{pyp_clustering/correl.pdf}
+\vspace{-0.3cm}
+\end{center}
+\caption{The intrinsic conditional entropy metric $H(S|Z)$ correlates approximately linearly with \textsc{bleu}.}
+\label{fig:intr_correl}
+\end{figure}
\section{Discussion}
diff --git a/report/pyp_clustering/bleu_condentropy.R b/report/pyp_clustering/bleu_condentropy.R
new file mode 100644
index 00000000..8c6fb1b7
--- /dev/null
+++ b/report/pyp_clustering/bleu_condentropy.R
@@ -0,0 +1,5 @@
+data <- read.table("urdu.dat", header=TRUE)
+attach(data)
+data.lm <- glm(BLEU ~ ConditionalEntropy)
+plot(data$ConditionalEntropy,data$BLEU)
+abline(data.lm)
diff --git a/report/pyp_clustering/bleu_condentropy.dat b/report/pyp_clustering/bleu_condentropy.dat
new file mode 100644
index 00000000..125d9424
--- /dev/null
+++ b/report/pyp_clustering/bleu_condentropy.dat
@@ -0,0 +1,13 @@
+ConditionalEntropy BLEU
+4.45 19.7
+4.49 20.9
+0 24.6
+3.25 21.7
+2.86 22.0
+3.03 20.4
+2.29 21.8
+1.85 22.2
+2.27 22.3
+3.41 21.3
+3.16 20.8
+4.06 20.1
diff --git a/report/pyp_clustering/correl.pdf b/report/pyp_clustering/correl.pdf
new file mode 100644
index 00000000..5bd563be
--- /dev/null
+++ b/report/pyp_clustering/correl.pdf
@@ -0,0 +1,215 @@
+%PDF-1.4
+%ρ\r
+1 0 obj
+<<
+/CreationDate (D:20100823175418)
+/ModDate (D:20100823175418)
+/Title (R Graphics Output)
+/Producer (R 2.11.1)
+/Creator (R)
+>>
+endobj
+2 0 obj
+<<
+/Type /Catalog
+/Pages 3 0 R
+>>
+endobj
+5 0 obj
+<<
+/Type /Page
+/Parent 3 0 R
+/Contents 6 0 R
+/Resources 4 0 R
+>>
+endobj
+6 0 obj
+<<
+/Length 7 0 R
+>>
+stream
+1 J 1 j q
+Q q 59.04 73.44 414.72 371.52 re W n
+0.000 0.000 0.000 RG
+0.75 w
+[] 0 d
+1 J
+1 j
+10.00 M
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 452.02 84.60 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 455.44 168.85 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 71.44 428.60 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 349.39 225.01 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 316.04 246.07 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 330.57 133.75 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 267.29 232.03 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 229.66 260.11 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 265.58 267.14 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 363.07 196.93 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 341.69 161.83 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 1 Tr 7.48 0 0 7.48 418.66 112.69 Tm (l) Tj 0 Tr
+ET
+Q q
+0.000 0.000 0.000 RG
+0.75 w
+[] 0 d
+1 J
+1 j
+10.00 M
+74.40 73.44 m 416.49 73.44 l S
+74.40 73.44 m 74.40 66.24 l S
+159.92 73.44 m 159.92 66.24 l S
+245.45 73.44 m 245.45 66.24 l S
+330.97 73.44 m 330.97 66.24 l S
+416.49 73.44 m 416.49 66.24 l S
+BT
+0.000 0.000 0.000 rg
+/F2 1 Tf 12.00 0.00 -0.00 12.00 71.06 47.52 Tm (0) Tj
+ET
+BT
+/F2 1 Tf 12.00 0.00 -0.00 12.00 156.59 47.52 Tm (1) Tj
+ET
+BT
+/F2 1 Tf 12.00 0.00 -0.00 12.00 242.11 47.52 Tm (2) Tj
+ET
+BT
+/F2 1 Tf 12.00 0.00 -0.00 12.00 327.63 47.52 Tm (3) Tj
+ET
+BT
+/F2 1 Tf 12.00 0.00 -0.00 12.00 413.16 47.52 Tm (4) Tj
+ET
+59.04 108.26 m 59.04 389.08 l S
+59.04 108.26 m 51.84 108.26 l S
+59.04 178.47 m 51.84 178.47 l S
+59.04 248.67 m 51.84 248.67 l S
+59.04 318.87 m 51.84 318.87 l S
+59.04 389.08 m 51.84 389.08 l S
+BT
+/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 101.59 Tm (20) Tj
+ET
+BT
+/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 171.79 Tm (21) Tj
+ET
+BT
+/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 242.00 Tm (22) Tj
+ET
+BT
+/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 312.20 Tm (23) Tj
+ET
+BT
+/F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 382.41 Tm (24) Tj
+ET
+59.04 73.44 m
+473.76 73.44 l
+473.76 444.96 l
+59.04 444.96 l
+59.04 73.44 l
+S
+Q q
+BT
+0.000 0.000 0.000 rg
+/F2 1 Tf 12.00 0.00 -0.00 12.00 215.89 18.72 Tm [(ConditionalEntrop) 30 (y)] TJ
+ET
+BT
+/F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 243.53 Tm (BLEU) Tj
+ET
+Q q 59.04 73.44 414.72 371.52 re W n
+0.000 0.000 0.000 RG
+0.75 w
+[] 0 d
+1 J
+1 j
+10.00 M
+59.04 419.37 m 473.76 96.26 l S
+Q
+endstream
+endobj
+7 0 obj
+2296
+endobj
+3 0 obj
+<<
+/Type /Pages
+/Kids [
+5 0 R
+]
+/Count 1
+/MediaBox [0 0 504 504]
+>>
+endobj
+4 0 obj
+<<
+/ProcSet [/PDF /Text]
+/Font << /F1 9 0 R /F2 10 0 R >>
+/ExtGState << >>
+>>
+endobj
+8 0 obj
+<<
+/Type /Encoding
+/BaseEncoding /WinAnsiEncoding
+/Differences [ 45/minus 96/quoteleft
+144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent
+/dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space]
+>>
+endobj
+9 0 obj
+<<
+/Type /Font
+/Subtype /Type1
+/Name /F1
+/BaseFont /ZapfDingbats
+>>
+endobj
+10 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Name /F2
+/BaseFont /Helvetica
+/Encoding 8 0 R
+>> endobj
+xref
+0 11
+0000000000 65535 f
+0000000021 00000 n
+0000000164 00000 n
+0000002662 00000 n
+0000002745 00000 n
+0000000213 00000 n
+0000000293 00000 n
+0000002642 00000 n
+0000002838 00000 n
+0000003095 00000 n
+0000003178 00000 n
+trailer
+<<
+/Size 11
+/Info 1 0 R
+/Root 2 0 R
+>>
+startxref
+3275
+%%EOF