diff options
Diffstat (limited to 'python/src/hypergraph.pxi')
-rw-r--r-- | python/src/hypergraph.pxi | 281 |
1 files changed, 0 insertions, 281 deletions
diff --git a/python/src/hypergraph.pxi b/python/src/hypergraph.pxi deleted file mode 100644 index 4a709d32..00000000 --- a/python/src/hypergraph.pxi +++ /dev/null @@ -1,281 +0,0 @@ -cimport hypergraph -cimport kbest - -cdef class Hypergraph: - cdef hypergraph.Hypergraph* hg - cdef MT19937* rng - - def __dealloc__(self): - del self.hg - if self.rng != NULL: - del self.rng - - cdef MT19937* _rng(self): - if self.rng == NULL: - self.rng = new MT19937() - return self.rng - - def viterbi(self): - """hg.viterbi() -> String for the best hypothesis in the hypergraph.""" - cdef vector[WordID] trans - hypergraph.ViterbiESentence(self.hg[0], &trans) - return unicode(GetString(trans).c_str(), 'utf8') - - def viterbi_trees(self): - """hg.viterbi_trees() -> (f_tree, e_tree) - f_tree: Source tree for the best hypothesis in the hypergraph. - e_tree: Target tree for the best hypothesis in the hypergraph. - """ - f_tree = unicode(hypergraph.ViterbiFTree(self.hg[0]).c_str(), 'utf8') - e_tree = unicode(hypergraph.ViterbiETree(self.hg[0]).c_str(), 'utf8') - return (f_tree, e_tree) - - def viterbi_features(self): - """hg.viterbi_features() -> SparseVector with the features corresponding - to the best derivation in the hypergraph.""" - cdef SparseVector fmap = SparseVector.__new__(SparseVector) - fmap.vector = new FastSparseVector[weight_t](hypergraph.ViterbiFeatures(self.hg[0])) - return fmap - - def viterbi_forest(self): - cdef Hypergraph hg = Hypergraph() - hg.hg = new hypergraph.Hypergraph(self.hg[0].CreateViterbiHypergraph(NULL).get()[0]) - return hg - - def viterbi_joshua(self): - """hg.viterbi_joshua() -> Joshua representation of the best derivation.""" - return unicode(hypergraph.JoshuaVisualizationString(self.hg[0]).c_str(), 'utf8') - - def kbest(self, size): - """hg.kbest(size) -> List of k-best hypotheses in the hypergraph.""" - cdef kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal]* derivations = new kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal](self.hg[0], size) - cdef kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal].Derivation* derivation - cdef unsigned k - try: - for k in range(size): - derivation = derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) - if not derivation: break - yield unicode(GetString(derivation._yield).c_str(), 'utf8') - finally: - del derivations - - def kbest_trees(self, size): - """hg.kbest_trees(size) -> List of k-best trees in the hypergraph.""" - cdef kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal]* f_derivations = new kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal](self.hg[0], size) - cdef kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal].Derivation* f_derivation - cdef kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal]* e_derivations = new kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal](self.hg[0], size) - cdef kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal].Derivation* e_derivation - cdef unsigned k - try: - for k in range(size): - f_derivation = f_derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) - e_derivation = e_derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) - if not f_derivation or not e_derivation: break - f_tree = unicode(GetString(f_derivation._yield).c_str(), 'utf8') - e_tree = unicode(GetString(e_derivation._yield).c_str(), 'utf8') - yield (f_tree, e_tree) - finally: - del f_derivations - del e_derivations - - def kbest_features(self, size): - """hg.kbest_trees(size) -> List of k-best feature vectors in the hypergraph.""" - cdef kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal]* derivations = new kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal](self.hg[0], size) - cdef kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal].Derivation* derivation - cdef SparseVector fmap - cdef unsigned k - try: - for k in range(size): - derivation = derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) - if not derivation: break - fmap = SparseVector.__new__(SparseVector) - fmap.vector = new FastSparseVector[weight_t](derivation._yield) - yield fmap - finally: - del derivations - - def sample(self, unsigned n): - """hg.sample(n) -> Sample of n hypotheses from the hypergraph.""" - cdef vector[hypergraph.Hypothesis]* hypos = new vector[hypergraph.Hypothesis]() - hypergraph.sample_hypotheses(self.hg[0], n, self._rng(), hypos) - cdef unsigned k - try: - for k in range(hypos.size()): - yield unicode(GetString(hypos[0][k].words).c_str(), 'utf8') - finally: - del hypos - - def sample_trees(self, unsigned n): - """hg.sample_trees(n) -> Sample of n trees from the hypergraph.""" - cdef vector[string]* trees = new vector[string]() - hypergraph.sample_trees(self.hg[0], n, self._rng(), trees) - cdef unsigned k - try: - for k in range(trees.size()): - yield unicode(trees[0][k].c_str(), 'utf8') - finally: - del trees - - def intersect(self, inp): - """hg.intersect(Lattice/string): Intersect the hypergraph with the provided reference.""" - cdef Lattice lat - if isinstance(inp, Lattice): - lat = <Lattice> inp - elif isinstance(inp, basestring): - lat = Lattice(inp) - else: - raise TypeError('cannot intersect hypergraph with %s' % type(inp)) - return hypergraph.Intersect(lat.lattice[0], self.hg) - - def prune(self, beam_alpha=0, density=0, **kwargs): - """hg.prune(beam_alpha=0, density=0): Prune the hypergraph. - beam_alpha: use beam pruning - density: use density pruning""" - cdef hypergraph.EdgeMask* preserve_mask = NULL - if 'csplit_preserve_full_word' in kwargs: - preserve_mask = new hypergraph.EdgeMask(self.hg.edges_.size()) - preserve_mask[0][hypergraph.GetFullWordEdgeIndex(self.hg[0])] = True - self.hg.PruneInsideOutside(beam_alpha, density, preserve_mask, False, 1, False) - if preserve_mask: - del preserve_mask - - def lattice(self): # TODO direct hg -> lattice conversion in cdec - """hg.lattice() -> Lattice corresponding to the hypergraph.""" - cdef bytes plf = hypergraph.AsPLF(self.hg[0], True).c_str() - return Lattice(eval(plf)) - - def plf(self): - """hg.plf() -> Lattice PLF representation corresponding to the hypergraph.""" - return bytes(hypergraph.AsPLF(self.hg[0], True).c_str()) - - def reweight(self, weights): - """hg.reweight(SparseVector/DenseVector): Reweight the hypergraph with a new vector.""" - if isinstance(weights, SparseVector): - self.hg.Reweight((<SparseVector> weights).vector[0]) - elif isinstance(weights, DenseVector): - self.hg.Reweight((<DenseVector> weights).vector[0]) - else: - raise TypeError('cannot reweight hypergraph with %s' % type(weights)) - - property edges: - def __get__(self): - cdef unsigned i - for i in range(self.hg.edges_.size()): - yield HypergraphEdge().init(self.hg, i) - - property nodes: - def __get__(self): - cdef unsigned i - for i in range(self.hg.nodes_.size()): - yield HypergraphNode().init(self.hg, i) - - property goal: - def __get__(self): - return HypergraphNode().init(self.hg, self.hg.GoalNode()) - - property npaths: - def __get__(self): - return self.hg.NumberOfPaths() - - def inside_outside(self): - """hg.inside_outside() -> SparseVector with inside-outside scores for each feature.""" - cdef FastSparseVector[prob_t]* result = new FastSparseVector[prob_t]() - cdef prob_t z = hypergraph.InsideOutside(self.hg[0], result) - result[0] /= z - cdef SparseVector vector = SparseVector.__new__(SparseVector) - vector.vector = new FastSparseVector[double]() - cdef FastSparseVector[prob_t].const_iterator* it = new FastSparseVector[prob_t].const_iterator(result[0], False) - cdef unsigned i - for i in range(result.size()): - vector.vector.set_value(it[0].ptr().first, log(it[0].ptr().second)) - pinc(it[0]) # ++it - del it - del result - return vector - -cdef class HypergraphEdge: - cdef hypergraph.Hypergraph* hg - cdef hypergraph.HypergraphEdge* edge - cdef public TRule trule - - cdef init(self, hypergraph.Hypergraph* hg, unsigned i): - self.hg = hg - self.edge = &hg.edges_[i] - self.trule = TRule.__new__(TRule) - self.trule.rule = new shared_ptr[grammar.TRule](self.edge.rule_) - return self - - def __len__(self): - return self.edge.tail_nodes_.size() - - property head_node: - def __get__(self): - return HypergraphNode().init(self.hg, self.edge.head_node_) - - property tail_nodes: - def __get__(self): - cdef unsigned i - for i in range(self.edge.tail_nodes_.size()): - yield HypergraphNode().init(self.hg, self.edge.tail_nodes_[i]) - - property span: - def __get__(self): - return (self.edge.i_, self.edge.j_) - - property src_span: - def __get__(self): - return (self.edge.prev_i_, self.edge.prev_j_) - - property feature_values: - def __get__(self): - cdef SparseVector vector = SparseVector.__new__(SparseVector) - vector.vector = new FastSparseVector[double](self.edge.feature_values_) - return vector - - property prob: - def __get__(self): - return self.edge.edge_prob_.as_float() - - def __richcmp__(HypergraphEdge x, HypergraphEdge y, int op): - if op == 2: # == - return x.edge == y.edge - elif op == 3: # != - return not (x == y) - raise NotImplemented('comparison not implemented for HypergraphEdge') - -cdef class HypergraphNode: - cdef hypergraph.Hypergraph* hg - cdef hypergraph.HypergraphNode* node - - cdef init(self, hypergraph.Hypergraph* hg, unsigned i): - self.hg = hg - self.node = &hg.nodes_[i] - return self - - property in_edges: - def __get__(self): - cdef unsigned i - for i in range(self.node.in_edges_.size()): - yield HypergraphEdge().init(self.hg, self.node.in_edges_[i]) - - property out_edges: - def __get__(self): - cdef unsigned i - for i in range(self.node.out_edges_.size()): - yield HypergraphEdge().init(self.hg, self.node.out_edges_[i]) - - property span: - def __get__(self): - return next(self.in_edges).span - - property cat: - def __get__(self): - if self.node.cat_: - return str(TDConvert(-self.node.cat_).c_str()) - - def __richcmp__(HypergraphNode x, HypergraphNode y, int op): - if op == 2: # == - return x.node == y.node - elif op == 3: # != - return not (x == y) - raise NotImplemented('comparison not implemented for HypergraphNode') |