summaryrefslogtreecommitdiff
path: root/klm/lm/wrappers/nplm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'klm/lm/wrappers/nplm.cc')
-rw-r--r--klm/lm/wrappers/nplm.cc90
1 files changed, 90 insertions, 0 deletions
diff --git a/klm/lm/wrappers/nplm.cc b/klm/lm/wrappers/nplm.cc
new file mode 100644
index 00000000..70622bd2
--- /dev/null
+++ b/klm/lm/wrappers/nplm.cc
@@ -0,0 +1,90 @@
+#include "lm/wrappers/nplm.hh"
+#include "util/exception.hh"
+#include "util/file.hh"
+
+#include <algorithm>
+
+#include <string.h>
+
+#include "neuralLM.h"
+
+namespace lm {
+namespace np {
+
+Vocabulary::Vocabulary(const nplm::vocabulary &vocab)
+ : base::Vocabulary(vocab.lookup_word("<s>"), vocab.lookup_word("</s>"), vocab.lookup_word("<unk>")),
+ vocab_(vocab), null_word_(vocab.lookup_word("<null>")) {}
+
+Vocabulary::~Vocabulary() {}
+
+WordIndex Vocabulary::Index(const std::string &str) const {
+ return vocab_.lookup_word(str);
+}
+
+bool Model::Recognize(const std::string &name) {
+ try {
+ util::scoped_fd file(util::OpenReadOrThrow(name.c_str()));
+ char magic_check[16];
+ util::ReadOrThrow(file.get(), magic_check, sizeof(magic_check));
+ const char nnlm_magic[] = "\\config\nversion ";
+ return !memcmp(magic_check, nnlm_magic, 16);
+ } catch (const util::Exception &) {
+ return false;
+ }
+}
+
+Model::Model(const std::string &file, std::size_t cache)
+ : base_instance_(new nplm::neuralLM(file)), vocab_(base_instance_->get_vocabulary()), cache_size_(cache) {
+ UTIL_THROW_IF(base_instance_->get_order() > NPLM_MAX_ORDER, util::Exception, "This NPLM has order " << (unsigned int)base_instance_->get_order() << " but the KenLM wrapper was compiled with " << NPLM_MAX_ORDER << ". Change the defintion of NPLM_MAX_ORDER and recompile.");
+ // log10 compatible with backoff models.
+ base_instance_->set_log_base(10.0);
+ State begin_sentence, null_context;
+ std::fill(begin_sentence.words, begin_sentence.words + NPLM_MAX_ORDER - 1, base_instance_->lookup_word("<s>"));
+ null_word_ = base_instance_->lookup_word("<null>");
+ std::fill(null_context.words, null_context.words + NPLM_MAX_ORDER - 1, null_word_);
+
+ Init(begin_sentence, null_context, vocab_, base_instance_->get_order());
+}
+
+Model::~Model() {}
+
+FullScoreReturn Model::FullScore(const State &from, const WordIndex new_word, State &out_state) const {
+ nplm::neuralLM *lm = backend_.get();
+ if (!lm) {
+ lm = new nplm::neuralLM(*base_instance_);
+ backend_.reset(lm);
+ lm->set_cache(cache_size_);
+ }
+ // State is in natural word order.
+ FullScoreReturn ret;
+ for (int i = 0; i < lm->get_order() - 1; ++i) {
+ lm->staging_ngram()(i) = from.words[i];
+ }
+ lm->staging_ngram()(lm->get_order() - 1) = new_word;
+ ret.prob = lm->lookup_from_staging();
+ // Always say full order.
+ ret.ngram_length = lm->get_order();
+ // Shift everything down by one.
+ memcpy(out_state.words, from.words + 1, sizeof(WordIndex) * (lm->get_order() - 2));
+ out_state.words[lm->get_order() - 2] = new_word;
+ // Fill in trailing words with zeros so state comparison works.
+ memset(out_state.words + lm->get_order() - 1, 0, sizeof(WordIndex) * (NPLM_MAX_ORDER - lm->get_order()));
+ return ret;
+}
+
+// TODO: optimize with direct call?
+FullScoreReturn Model::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const {
+ // State is in natural word order. The API here specifies reverse order.
+ std::size_t state_length = std::min<std::size_t>(Order() - 1, context_rend - context_rbegin);
+ State state;
+ // Pad with null words.
+ for (lm::WordIndex *i = state.words; i < state.words + Order() - 1 - state_length; ++i) {
+ *i = null_word_;
+ }
+ // Put new words at the end.
+ std::reverse_copy(context_rbegin, context_rbegin + state_length, state.words + Order() - 1 - state_length);
+ return FullScore(state, new_word, out_state);
+}
+
+} // namespace np
+} // namespace lm