diff options
Diffstat (limited to 'gi')
| -rw-r--r-- | gi/pf/align-lexonly-pyp.cc | 2 | ||||
| -rw-r--r-- | gi/pf/conditional_pseg.h | 2 | ||||
| -rw-r--r-- | gi/pf/learn_cfg.cc | 4 | ||||
| -rw-r--r-- | gi/pf/pyp_lm.cc | 22 | 
4 files changed, 15 insertions, 15 deletions
diff --git a/gi/pf/align-lexonly-pyp.cc b/gi/pf/align-lexonly-pyp.cc index 4ce7cf62..87f7f6b5 100644 --- a/gi/pf/align-lexonly-pyp.cc +++ b/gi/pf/align-lexonly-pyp.cc @@ -104,7 +104,7 @@ struct HierarchicalWordBase {    }    void Summary() const { -    cerr << "NUMBER OF CUSTOMERS: " << r.num_customers() << "  (d=" << r.discount() << ",\\alpha=" << r.alpha() << ')' << endl; +    cerr << "NUMBER OF CUSTOMERS: " << r.num_customers() << "  (d=" << r.discount() << ",s=" << r.strength() << ')' << endl;      for (MFCR<vector<WordID> >::const_iterator it = r.begin(); it != r.end(); ++it)        cerr << "   " << it->second.total_dish_count_ << " (on " << it->second.table_counts_.size() << " tables)" << TD::GetString(it->first) << endl;    } diff --git a/gi/pf/conditional_pseg.h b/gi/pf/conditional_pseg.h index f9841cbf..86403d8d 100644 --- a/gi/pf/conditional_pseg.h +++ b/gi/pf/conditional_pseg.h @@ -22,7 +22,7 @@ struct MConditionalTranslationModel {    void Summary() const {      std::cerr << "Number of conditioning contexts: " << r.size() << std::endl;      for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { -      std::cerr << TD::GetString(it->first) << "   \t(d=" << it->second.discount() << ",\\alpha = " << it->second.alpha() << ") --------------------------" << std::endl; +      std::cerr << TD::GetString(it->first) << "   \t(d=" << it->second.discount() << ",s=" << it->second.strength() << ") --------------------------" << std::endl;        for (MFCR<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2)          std::cerr << "   " << -1 << '\t' << i2->first << std::endl;      } diff --git a/gi/pf/learn_cfg.cc b/gi/pf/learn_cfg.cc index 5b748311..bf157828 100644 --- a/gi/pf/learn_cfg.cc +++ b/gi/pf/learn_cfg.cc @@ -183,9 +183,9 @@ struct HieroLMModel {        nts[i].resample_hyperparameters(rng);      if (kHIERARCHICAL_PRIOR) {        q0.resample_hyperparameters(rng); -      cerr << "[base d=" << q0.discount() << ", alpha=" << q0.alpha() << "]"; +      cerr << "[base d=" << q0.discount() << ", s=" << q0.strength() << "]";      } -    cerr << " d=" << nts[0].discount() << ", alpha=" << nts[0].alpha() << endl; +    cerr << " d=" << nts[0].discount() << ", s=" << nts[0].strength() << endl;    }    const BaseRuleModel base; diff --git a/gi/pf/pyp_lm.cc b/gi/pf/pyp_lm.cc index e5c44c8b..7ebada13 100644 --- a/gi/pf/pyp_lm.cc +++ b/gi/pf/pyp_lm.cc @@ -78,14 +78,14 @@ template <unsigned N> struct PYPLM {        backoff(vs, da, db, ss, sr),        discount_a(da), discount_b(db),        strength_s(ss), strength_r(sr), -      d(0.8), alpha(1.0), lookup(N-1) {} +      d(0.8), strength(1.0), lookup(N-1) {}    void increment(WordID w, const vector<WordID>& context, MT19937* rng) {      const double bo = backoff.prob(w, context);      for (unsigned i = 0; i < N-1; ++i)        lookup[i] = context[context.size() - 1 - i];      typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it = p.find(lookup);      if (it == p.end()) -      it = p.insert(make_pair(lookup, CCRP<WordID>(d,alpha))).first; +      it = p.insert(make_pair(lookup, CCRP<WordID>(d,strength))).first;      if (it->second.increment(w, bo, rng))        backoff.increment(w, context, rng);    } @@ -107,7 +107,7 @@ template <unsigned N> struct PYPLM {    }    double log_likelihood() const { -    return log_likelihood(d, alpha) + backoff.log_likelihood(); +    return log_likelihood(d, strength) + backoff.log_likelihood();    }    double log_likelihood(const double& dd, const double& aa) const { @@ -125,15 +125,15 @@ template <unsigned N> struct PYPLM {      DiscountResampler(const PYPLM& m) : m_(m) {}      const PYPLM& m_;      double operator()(const double& proposed_discount) const { -      return m_.log_likelihood(proposed_discount, m_.alpha); +      return m_.log_likelihood(proposed_discount, m_.strength);      }    };    struct AlphaResampler {      AlphaResampler(const PYPLM& m) : m_(m) {}      const PYPLM& m_; -    double operator()(const double& proposed_alpha) const { -      return m_.log_likelihood(m_.d, proposed_alpha); +    double operator()(const double& proposed_strength) const { +      return m_.log_likelihood(m_.d, proposed_strength);      }    }; @@ -141,25 +141,25 @@ template <unsigned N> struct PYPLM {      DiscountResampler dr(*this);      AlphaResampler ar(*this);      for (int iter = 0; iter < nloop; ++iter) { -      alpha = slice_sampler1d(ar, alpha, *rng, 0.0, +      strength = slice_sampler1d(ar, strength, *rng, 0.0,                                std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);        d = slice_sampler1d(dr, d, *rng, std::numeric_limits<double>::min(),                            1.0, 0.0, niterations, 100*niterations);      } -    alpha = slice_sampler1d(ar, alpha, *rng, 0.0, +    strength = slice_sampler1d(ar, strength, *rng, 0.0,                              std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);      typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it; -    cerr << "PYPLM<" << N << ">(d=" << d << ",a=" << alpha << ") = " << log_likelihood(d, alpha) << endl; +    cerr << "PYPLM<" << N << ">(d=" << d << ",a=" << strength << ") = " << log_likelihood(d, strength) << endl;      for (it = p.begin(); it != p.end(); ++it) {        it->second.set_discount(d); -      it->second.set_alpha(alpha); +      it->second.set_strength(strength);      }      backoff.resample_hyperparameters(rng, nloop, niterations);    }    PYPLM<N-1> backoff;    double discount_a, discount_b, strength_s, strength_r; -  double d, alpha; +  double d, strength;    mutable vector<WordID> lookup;  // thread-local    unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > > p;  };  | 
