diff options
Diffstat (limited to 'dtrain')
-rw-r--r-- | dtrain/README.md | 124 |
1 files changed, 72 insertions, 52 deletions
diff --git a/dtrain/README.md b/dtrain/README.md index 3d09393c..69df83a5 100644 --- a/dtrain/README.md +++ b/dtrain/README.md @@ -6,49 +6,52 @@ Build & run build .. <pre> git clone git://github.com/qlt/cdec-dtrain.git -cd cdec_dtrain -autoreconf -ifv -./configure +cd cdec-dtrain +autoreconf -if[v] +./configure [--disable-gtest] make </pre> and run: <pre> cd dtrain/hstreaming/ (edit ini files) -edit hadoop-streaming-job.sh $IN and $OUT +edit the vars in hadoop-streaming-job.sh ($ID, $IN and $OUT) ./hadoop-streaming-job.sh </pre> - Ideas ----- -* *MULTIPARTITE* ranking (1 vs all, cluster model/score) -* *REMEMBER* sampled translations (merge) -* *SELECT* iteration with highest (_real_) BLEU? -* *GENERATED* data? (perfect translation in kbest) -* *CACHING* (ngrams for scoring) +* *MULTIPARTITE* ranking (1 vs rest, cluster model/score) +* *REMEMBER* sampled translations (merge kbest lists) +* *SELECT* iteration with highest real BLEU on devtest? +* *GENERATED* data? (perfect translation always in kbest) +* *CACHE* ngrams for scoring * hadoop *PIPES* imlementation * *ITERATION* variants (shuffle resulting weights, re-iterate) * *MORE THAN ONE* reference for BLEU? -* *RANDOM RESTARTS* -* use separate TEST SET for each shard +* *RANDOM RESTARTS* or directions +* use separate *TEST SET* for each shard +* *REDUCE* training set (50k?) +* *SYNTAX* features (CD) Uncertain, known bugs, problems ------------------------------- * cdec kbest vs 1best (no -k param), rescoring (ref?)? => ok(?) * no sparse vector in decoder => ok/fixed -* PhraseModel_* features (0..99 seem to be generated, why 99?) -* flex scanner jams on malicious input, we could skip that -* input/grammar caching (strings, files) +* PhraseModel features, mapping? +* flex scanner jams on bad input, we could skip that +* input/grammar caching (strings -> WordIDs) +* look at forest sampling... +* devtest loo or not? why loo grammars larger? (sort psgs | uniq -> grammar) -FIXME ------ -merge dtrain part-* files -mapred count shard sents -250 forest sampling is real bad, bug? -kenlm not portable (i7-2620M vs Intel(R) Xeon(R) CPU E5620 @ 2.40GHz) -metric reporter of bleu for each shard -mapred chaining? hamake? +FIXME, todo +----------- +* merge dtrain part-X files, for better blocks +* mapred count shard sents +* 250 forest sampling is real bad, bug? +* metric reporter of bleu for each shard +* kenlm not portable (i7-2620M vs Intel(R) Xeon(R) CPU E5620 @ 2.40GHz) +* mapred chaining? hamake? Data ---- @@ -63,57 +66,74 @@ nc-v6.de-en.cs.loo peg ep-v6.de-en.cs pe ep-v6.de-en.cs.loo p -p: prep, e: extract, g: grammar, d: dtrain +a: alignment:, p: prep, e: extract, +g: grammar, d: dtrain </pre> - Experiments ----------- -grammar stats - oov on dev/devtest/test - size - #rules (uniq) - time for building - ep: 1.5 days on 278 slots (30 nodes) - nc: ~2 hours ^^^ - -lm stats - oov on dev/devtest/test - perplex on train/dev/devtest/test - +[grammar stats + oov on dev/devtest/test + size + #rules (uniq) + time for building + ep: 1.5 days on 278 slots (30 nodes) + nc: ~2 hours ^^^ + + lm stats + oov on dev/devtest/test + perplex on train/dev/devtest/test] + +[0] which word alignment? berkeleyaligner giza++ as of Sep 24 2011, mgizapp 0.6.3 - symgiza as of Oct 1 2011 + --symgiza as of Oct 1 2011-- --- - randomly sample 100 from train.loo - run mira/dtrain for 50/60 iterations - w/o lm, wp - measure ibm_bleu on exact same sents + NON LOO + (symgiza unreliable) + randomly sample 100 from train with loo + run dtrain for 100 iterations + w/o all other feats (lm, wp, ...) +Glue + measure ibm bleu on exact same sents + +[1] +lm? + 3-4-5 + open + unk + nounk (-100 for unk) + -- + lm oov weight pos? + no tuning, -100 prob for unk EXPECT: nounk + tuning with dtrain EXPECT: open +[2] +cs? + 'default' weights + +[3] +loo vs non-loo + 'jackknifing' + generalization (determ.!) on dev, test on devtest + +[4] stability + all with default params mira: 100 pro: 100 vest: 100 dtrain: 100 - +[undecided] pro metaparam (max) iter regularization + ??? mira metaparam (max) iter: 10 (nc???) vs 15 (ep???) -lm? - 3-4-5 - open - unk - nounk (-100 for unk) - -- - tune or not??? - lm oov weight pos? - features to try NgramFeatures -> target side ngrams RuleIdentityFeatures |