diff options
Diffstat (limited to 'dtrain')
| -rw-r--r-- | dtrain/Makefile.am | 2 | ||||
| -rw-r--r-- | dtrain/README.md | 9 | ||||
| -rw-r--r-- | dtrain/dtrain.cc | 22 | ||||
| -rw-r--r-- | dtrain/dtrain.h | 14 | ||||
| -rw-r--r-- | dtrain/ksampler.h | 7 | ||||
| -rw-r--r-- | dtrain/pairsampling.h | 28 | ||||
| -rw-r--r-- | dtrain/score.cc | 22 | ||||
| -rw-r--r-- | dtrain/score.h | 5 | ||||
| -rw-r--r-- | dtrain/test/example/README | 4 | ||||
| -rw-r--r-- | dtrain/test/example/dtrain.ini | 3 | ||||
| -rw-r--r-- | dtrain/test/example/expected-output | 125 | 
11 files changed, 222 insertions, 19 deletions
| diff --git a/dtrain/Makefile.am b/dtrain/Makefile.am index f39d161e..64fef489 100644 --- a/dtrain/Makefile.am +++ b/dtrain/Makefile.am @@ -3,5 +3,5 @@ bin_PROGRAMS = dtrain  dtrain_SOURCES = dtrain.cc score.cc  dtrain_LDADD   = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz -AM_CPPFLAGS = -O3 -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval +AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval diff --git a/dtrain/README.md b/dtrain/README.md index 9580df6d..350c7423 100644 --- a/dtrain/README.md +++ b/dtrain/README.md @@ -41,6 +41,8 @@ DTRAIN_LOCAL.  Next  ---- ++ approx. Bleu? ++ turn off inclusion  + (dtrain|decoder) more meta-parameters testing  + feature selection directly in dtrain  + feature template: target side rule ngrams @@ -48,6 +50,13 @@ Next  + make svm doable; no subgradient?  + reranking while sgd?  + try PRO, mira emulations ++ sampling (MBR) ++ forest (on train)? ++ best BLEU transl (Sokolov)? ++ entire reg. path ++ resharding [nfold cross val.] ++ bigger LM, feats (target side Ng., word alignments etc.) ++ merge kbest lists  Legal  ----- diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc index 8b1fc953..717d47a2 100644 --- a/dtrain/dtrain.cc +++ b/dtrain/dtrain.cc @@ -33,6 +33,7 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)      ("fselect",           po::value<weight_t>()->default_value(-1), "TODO select top x percent (or by threshold) of features after each epoch")      ("approx_bleu_d",     po::value<score_t>()->default_value(0.9),                                "discount for approx. BLEU")      ("scale_bleu_diff",   po::value<bool>()->zero_tokens(),                   "learning rate <- bleu diff of a misranked pair") +    ("loss_margin",       po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near")  #ifdef DTRAIN_LOCAL      ("refs,r",            po::value<string>(),                                                      "references in local mode")  #endif @@ -134,6 +135,8 @@ main(int argc, char** argv)    const string select_weights = cfg["select_weights"].as<string>();    const float hi_lo = cfg["hi_lo"].as<float>();    const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>(); +  weight_t loss_margin = cfg["loss_margin"].as<weight_t>(); +  if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max();    bool scale_bleu_diff = false;    if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true;    bool average = false; @@ -160,6 +163,8 @@ main(int argc, char** argv)      scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer);    } else if (scorer_str == "smooth_bleu") {      scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer); +  } else if (scorer_str == "smooth_single_bleu") { +    scorer = dynamic_cast<SmoothSingleBleuScorer*>(new SmoothSingleBleuScorer);    } else if (scorer_str == "approx_bleu") {      scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d));    } else { @@ -220,7 +225,7 @@ main(int argc, char** argv)    grammar_buf_out.open(grammar_buf_fn.c_str());  #endif -  unsigned in_sz = UINT_MAX; // input index, input size +  unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size    vector<pair<score_t, score_t> > all_scores;    score_t max_score = 0.;    unsigned best_it = 0; @@ -242,6 +247,7 @@ main(int argc, char** argv)      if (!scale_bleu_diff) cerr << setw(25) << "learning rate " << eta << endl;      else cerr << setw(25) << "learning rate " << "bleu diff" << endl;      cerr << setw(25) << "gamma " << gamma << endl; +    cerr << setw(25) << "loss margin " << loss_margin << endl;      cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl;      if (pair_sampling == "XYX")        cerr << setw(25) << "hi lo " << hi_lo << endl; @@ -424,12 +430,18 @@ main(int argc, char** argv)        for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();             it != pairs.end(); it++) { +#ifdef DTRAIN_FASTER_PERCEPTRON +        bool rank_error = true; // pair filtering already did this for us +        rank_errors++; +        score_t margin = std::numeric_limits<float>::max(); +#else          bool rank_error = it->first.model <= it->second.model;          if (rank_error) rank_errors++; -        score_t margin = fabs(it->first.model - it->second.model); -        if (!rank_error && margin < 1) margin_violations++; +        score_t margin = fabs(fabs(it->first.model) - fabs(it->second.model)); +        if (!rank_error && margin < loss_margin) margin_violations++; +#endif          if (scale_bleu_diff) eta = it->first.score - it->second.score; -        if (rank_error || (gamma && margin<1)) { +        if (rank_error || margin < loss_margin) {            SparseVector<weight_t> diff_vec = it->first.f - it->second.f;            lambdas.plus_eq_v_times_s(diff_vec, eta);            if (gamma) @@ -534,8 +546,10 @@ main(int argc, char** argv)      cerr << _np << npairs/(float)in_sz << endl;      cerr << "        avg # rank err: ";      cerr << rank_errors/(float)in_sz << endl; +#ifndef DTRAIN_FASTER_PERCEPTRON      cerr << "     avg # margin viol: ";      cerr << margin_violations/(float)in_sz << endl; +#endif      cerr << "    non0 feature count: " <<  nonz << endl;      cerr << "           avg list sz: " << list_sz/(float)in_sz << endl;      cerr << "           avg f count: " << f_count/(float)list_sz << endl; diff --git a/dtrain/dtrain.h b/dtrain/dtrain.h index 94d149ce..d8dc14b6 100644 --- a/dtrain/dtrain.h +++ b/dtrain/dtrain.h @@ -1,6 +1,14 @@  #ifndef _DTRAIN_H_  #define _DTRAIN_H_ +#undef DTRAIN_FASTER_PERCEPTRON // only look at misranked pairs +                                 // DO NOT USE WITH SVM! +#undef DTRAIN_LOCAL +#define DTRAIN_DOTS 10 // after how many inputs to display a '.' +#define DTRAIN_GRAMMAR_DELIM "########EOS########" +#define DTRAIN_SCALE 100000 + +  #include <iomanip>  #include <climits>  #include <string.h> @@ -13,11 +21,7 @@  #include "filelib.h" -#undef DTRAIN_LOCAL -#define DTRAIN_DOTS 10 // after how many inputs to display a '.' -#define DTRAIN_GRAMMAR_DELIM "########EOS########" -#define DTRAIN_SCALE 100000  using namespace std;  using namespace dtrain; @@ -32,7 +36,7 @@ inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids  inline string gettmpf(const string path, const string infix)  { -  char fn[1024]; +  char fn[path.size() + infix.size() + 8];    strcpy(fn, path.c_str());    strcat(fn, "/");    strcat(fn, infix.c_str()); diff --git a/dtrain/ksampler.h b/dtrain/ksampler.h index f52fb649..bc2f56cd 100644 --- a/dtrain/ksampler.h +++ b/dtrain/ksampler.h @@ -8,6 +8,11 @@  namespace dtrain  { +bool +cmp_hyp_by_model_d(ScoredHyp a, ScoredHyp b) +{ +  return a.model > b.model; +}  struct KSampler : public HypSampler  { @@ -44,6 +49,8 @@ struct KSampler : public HypSampler        sz_++;        f_count_ += h.f.size();      } +    sort(s_.begin(), s_.end(), cmp_hyp_by_model_d); +    for (unsigned i = 0; i < s_.size(); i++) s_[i].rank = i;    }  }; diff --git a/dtrain/pairsampling.h b/dtrain/pairsampling.h index bac132c6..32006a41 100644 --- a/dtrain/pairsampling.h +++ b/dtrain/pairsampling.h @@ -46,11 +46,18 @@ all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, sc  inline void  partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, float hi_lo)  { -  sort(s->begin(), s->end(), cmp_hyp_by_score_d);    unsigned sz = s->size(); +  if (sz < 2) return; +  sort(s->begin(), s->end(), cmp_hyp_by_score_d);    unsigned sep = round(sz*hi_lo); -  for (unsigned i = 0; i < sep; i++) { -    for (unsigned j = sep; j < sz; j++) { +  unsigned sep_hi = sep; +  if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi; +  else sep_hi = 1; +  for (unsigned i = 0; i < sep_hi; i++) { +    for (unsigned j = sep_hi; j < sz; j++) { +#ifdef DTRAIN_FASTER_PERCEPTRON +      if ((*s)[i].model <= (*s)[j].model) { +#endif        if (threshold > 0) {          if (accept_pair((*s)[i].score, (*s)[j].score, threshold))            training.push_back(make_pair((*s)[i], (*s)[j])); @@ -58,10 +65,18 @@ partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, scor          if ((*s)[i].score != (*s)[j].score)            training.push_back(make_pair((*s)[i], (*s)[j]));        } +#ifdef DTRAIN_FASTER_PERCEPTRON +      } +#endif      }    } -  for (unsigned i = sep; i < sz-sep; i++) { -    for (unsigned j = sz-sep; j < sz; j++) { +  unsigned sep_lo = sz-sep; +  while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo; +  for (unsigned i = sep_hi; i < sz-sep_lo; i++) { +    for (unsigned j = sz-sep_lo; j < sz; j++) { +#ifdef DTRAIN_FASTER_PERCEPTRON +      if ((*s)[i].model <= (*s)[j].model) { +#endif        if (threshold > 0) {          if (accept_pair((*s)[i].score, (*s)[j].score, threshold))            training.push_back(make_pair((*s)[i], (*s)[j])); @@ -69,6 +84,9 @@ partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, scor          if ((*s)[i].score != (*s)[j].score)            training.push_back(make_pair((*s)[i], (*s)[j]));        } +#ifdef DTRAIN_FASTER_PERCEPTRON +      } +#endif      }    }  } diff --git a/dtrain/score.cc b/dtrain/score.cc index 7b1f6be4..b331dc4f 100644 --- a/dtrain/score.cc +++ b/dtrain/score.cc @@ -103,7 +103,27 @@ SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,          i_bleu[j] += (1/((score_t)j+1)) * i_ng;        }      } -    sum += exp(i_bleu[i])/(pow(2.0, static_cast<double>(N_-i))); +    sum += exp(i_bleu[i])/(pow(2.0, N_-i)); +  } +  return brevity_penalty(hyp_len, ref_len) * sum; +} + +// variant of smooth_bleu; i-Bleu scores only single 'i' +score_t +SmoothSingleBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, +                        const unsigned /*rank*/, const unsigned /*src_len*/) +{ +  unsigned hyp_len = hyp.size(), ref_len = ref.size(); +  if (hyp_len == 0 || ref_len == 0) return 0.; +  NgramCounts counts = make_ngram_counts(hyp, ref, N_); +  unsigned M = N_; +  if (ref_len < N_) M = ref_len; +  score_t sum = 0.; +  unsigned j = 1; +  for (unsigned i = 0; i < M; i++) { +    if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break; +    sum += ((score_t)counts.clipped_[i]/counts.sum_[i])/pow(2.0, N_-j+1); +    j++;    }    return brevity_penalty(hyp_len, ref_len) * sum;  } diff --git a/dtrain/score.h b/dtrain/score.h index eb8ad912..d4fba22c 100644 --- a/dtrain/score.h +++ b/dtrain/score.h @@ -128,6 +128,11 @@ struct SmoothBleuScorer : public LocalScorer    score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);  }; +struct SmoothSingleBleuScorer : public LocalScorer +{ +   score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; +  struct ApproxBleuScorer : public BleuScorer  {    NgramCounts glob_onebest_counts_; diff --git a/dtrain/test/example/README b/dtrain/test/example/README index b3ea5f06..6937b11b 100644 --- a/dtrain/test/example/README +++ b/dtrain/test/example/README @@ -1,8 +1,8 @@  Small example of input format for distributed training.  Call dtrain from cdec/dtrain/ with ./dtrain -c test/example/dtrain.ini . -For this to work, disable '#define DTRAIN_LOCAL' from dtrain.h +For this to work, undef 'DTRAIN_LOCAL' in dtrain.h  and recompile. -Data is here: http://simianer.de/dtrain +Data is here: http://simianer.de/#dtrain diff --git a/dtrain/test/example/dtrain.ini b/dtrain/test/example/dtrain.ini index f87ee9cf..c8ac7c3f 100644 --- a/dtrain/test/example/dtrain.ini +++ b/dtrain/test/example/dtrain.ini @@ -5,7 +5,7 @@ decoder_config=test/example/cdec.ini # config for cdec  # weights for these features will be printed on each iteration  print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough  tmp=/tmp -stop_after=10 # stop epoch after 20 inputs +stop_after=10 # stop epoch after 10 inputs  # interesting stuff  epochs=3                # run over input 3 times @@ -19,3 +19,4 @@ filter=uniq             # only unique entries in kbest (surface form)  pair_sampling=XYX  hi_lo=0.1               # 10 vs 80 vs 10 and 80 vs 10 here  pair_threshold=0        # minimum distance in BLEU (this will still only use pairs with diff > 0) +loss_margin=0 diff --git a/dtrain/test/example/expected-output b/dtrain/test/example/expected-output new file mode 100644 index 00000000..25d2c069 --- /dev/null +++ b/dtrain/test/example/expected-output @@ -0,0 +1,125 @@ +                cdec cfg 'test/example/cdec.ini' +feature: WordPenalty (no config parameters) +State is 0 bytes for feature WordPenalty +feature: KLanguageModel (with config parameters 'test/example/nc-wmt11.en.srilm.gz') +Loading the LM will be faster if you build a binary file. +Reading test/example/nc-wmt11.en.srilm.gz +----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 +**************************************************************************************************** +Loaded 5-gram KLM from test/example/nc-wmt11.en.srilm.gz (MapSize=49581) +State is 98 bytes for feature KLanguageModel test/example/nc-wmt11.en.srilm.gz +feature: RuleIdentityFeatures (no config parameters) +State is 0 bytes for feature RuleIdentityFeatures +feature: RuleNgramFeatures (no config parameters) +State is 0 bytes for feature RuleNgramFeatures +feature: RuleShape (no config parameters) +  Example feature: Shape_S00000_T00000 +State is 0 bytes for feature RuleShape +Seeding random number sequence to 1072059181 + +dtrain +Parameters: +                       k 100 +                       N 4 +                       T 3 +                 scorer 'stupid_bleu' +             sample from 'kbest' +                  filter 'uniq' +           learning rate 0.0001 +                   gamma 0 +             loss margin 0 +                   pairs 'XYX' +                   hi lo 0.1 +          pair threshold 0 +          select weights 'VOID' +                  l1 reg 0 'none' +                cdec cfg 'test/example/cdec.ini' +                   input 'test/example/nc-wmt11.1k.gz' +                  output '-' +              stop_after 10 +(a dot represents 10 inputs) +Iteration #1 of 3. + . 10 +Stopping after 10 input sentences. +WEIGHTS +              Glue = -0.0293 +       WordPenalty = +0.049075 +     LanguageModel = +0.24345 + LanguageModel_OOV = -0.2029 +     PhraseModel_0 = +0.0084102 +     PhraseModel_1 = +0.021729 +     PhraseModel_2 = +0.014922 +     PhraseModel_3 = +0.104 +     PhraseModel_4 = -0.14308 +     PhraseModel_5 = +0.0247 +     PhraseModel_6 = -0.012 +       PassThrough = -0.2161 +        --- +       1best avg score: 0.16872 (+0.16872) + 1best avg model score: -1.8276 (-1.8276) +           avg # pairs: 1121.1 +        avg # rank err: 555.6 +     avg # margin viol: 0 +    non0 feature count: 277 +           avg list sz: 77.2 +           avg f count: 90.96 +(time 0.1 min, 0.6 s/S) + +Iteration #2 of 3. + . 10 +WEIGHTS +              Glue = -0.3526 +       WordPenalty = +0.067576 +     LanguageModel = +1.155 + LanguageModel_OOV = -0.2728 +     PhraseModel_0 = -0.025529 +     PhraseModel_1 = +0.095869 +     PhraseModel_2 = +0.094567 +     PhraseModel_3 = +0.12482 +     PhraseModel_4 = -0.36533 +     PhraseModel_5 = +0.1068 +     PhraseModel_6 = -0.1517 +       PassThrough = -0.286 +        --- +       1best avg score: 0.18394 (+0.015221) + 1best avg model score: 3.205 (+5.0326) +           avg # pairs: 1168.3 +        avg # rank err: 594.8 +     avg # margin viol: 0 +    non0 feature count: 543 +           avg list sz: 77.5 +           avg f count: 85.916 +(time 0.083 min, 0.5 s/S) + +Iteration #3 of 3. + . 10 +WEIGHTS +              Glue = -0.392 +       WordPenalty = +0.071963 +     LanguageModel = +0.81266 + LanguageModel_OOV = -0.4177 +     PhraseModel_0 = -0.2649 +     PhraseModel_1 = -0.17931 +     PhraseModel_2 = +0.038261 +     PhraseModel_3 = +0.20261 +     PhraseModel_4 = -0.42621 +     PhraseModel_5 = +0.3198 +     PhraseModel_6 = -0.1437 +       PassThrough = -0.4309 +        --- +       1best avg score: 0.2962 (+0.11225) + 1best avg model score: -36.274 (-39.479) +           avg # pairs: 1109.6 +        avg # rank err: 515.9 +     avg # margin viol: 0 +    non0 feature count: 741 +           avg list sz: 77 +           avg f count: 88.982 +(time 0.083 min, 0.5 s/S) + +Writing weights file to '-' ... +done + +--- +Best iteration: 3 [SCORE 'stupid_bleu'=0.2962]. +This took 0.26667 min. | 
