diff options
Diffstat (limited to 'dtrain/test/mtm11')
| -rw-r--r-- | dtrain/test/mtm11/logreg_cd/bin_class.cc | 4 | ||||
| -rw-r--r-- | dtrain/test/mtm11/logreg_cd/bin_class.h | 22 | ||||
| -rw-r--r-- | dtrain/test/mtm11/logreg_cd/log_reg.cc | 39 | ||||
| -rw-r--r-- | dtrain/test/mtm11/logreg_cd/log_reg.h | 14 | ||||
| -rw-r--r-- | dtrain/test/mtm11/mira_update/Hildreth.cpp | 187 | ||||
| -rw-r--r-- | dtrain/test/mtm11/mira_update/Hildreth.h | 10 | ||||
| -rw-r--r-- | dtrain/test/mtm11/mira_update/dtrain.cc | 532 | ||||
| -rw-r--r-- | dtrain/test/mtm11/mira_update/sample.h | 101 | 
8 files changed, 0 insertions, 909 deletions
| diff --git a/dtrain/test/mtm11/logreg_cd/bin_class.cc b/dtrain/test/mtm11/logreg_cd/bin_class.cc deleted file mode 100644 index 19bcde25..00000000 --- a/dtrain/test/mtm11/logreg_cd/bin_class.cc +++ /dev/null @@ -1,4 +0,0 @@ -#include "bin_class.h" - -Objective::~Objective() {} - diff --git a/dtrain/test/mtm11/logreg_cd/bin_class.h b/dtrain/test/mtm11/logreg_cd/bin_class.h deleted file mode 100644 index 3466109a..00000000 --- a/dtrain/test/mtm11/logreg_cd/bin_class.h +++ /dev/null @@ -1,22 +0,0 @@ -#ifndef _BIN_CLASS_H_ -#define _BIN_CLASS_H_ - -#include <vector> -#include "sparse_vector.h" - -struct TrainingInstance { -  // TODO add other info? loss for MIRA-type updates? -  SparseVector<double> x_feature_map; -  bool y; -}; - -struct Objective { -  virtual ~Objective(); - -  // returns f(x) and f'(x) -  virtual double ObjectiveAndGradient(const SparseVector<double>& x, -                  const std::vector<TrainingInstance>& training_instances, -                  SparseVector<double>* g) const = 0; -}; - -#endif diff --git a/dtrain/test/mtm11/logreg_cd/log_reg.cc b/dtrain/test/mtm11/logreg_cd/log_reg.cc deleted file mode 100644 index ec2331fe..00000000 --- a/dtrain/test/mtm11/logreg_cd/log_reg.cc +++ /dev/null @@ -1,39 +0,0 @@ -#include "log_reg.h" - -#include <vector> -#include <cmath> - -#include "sparse_vector.h" - -using namespace std; - -double LogisticRegression::ObjectiveAndGradient(const SparseVector<double>& x, -                              const vector<TrainingInstance>& training_instances, -                              SparseVector<double>* g) const { -  double cll = 0; -  for (int i = 0; i < training_instances.size(); ++i) { -    const double dotprod = training_instances[i].x_feature_map.dot(x); // TODO no bias, if bias, add x[0] -    double lp_false = dotprod; -    double lp_true = -dotprod; -    if (0 < lp_true) { -      lp_true += log1p(exp(-lp_true)); -      lp_false = log1p(exp(lp_false)); -    } else { -      lp_true = log1p(exp(lp_true)); -      lp_false += log1p(exp(-lp_false)); -    } -    lp_true *= -1; -    lp_false *= -1; -    if (training_instances[i].y) {  // true label -      cll -= lp_true; -      (*g) -= training_instances[i].x_feature_map * exp(lp_false); -      // (*g)[0] -= exp(lp_false); // bias -    } else {                  // false label -      cll -= lp_false; -      (*g) += training_instances[i].x_feature_map * exp(lp_true); -      // g += corpus[i].second * exp(lp_true); -    } -  } -  return cll; -} - diff --git a/dtrain/test/mtm11/logreg_cd/log_reg.h b/dtrain/test/mtm11/logreg_cd/log_reg.h deleted file mode 100644 index ecc560b8..00000000 --- a/dtrain/test/mtm11/logreg_cd/log_reg.h +++ /dev/null @@ -1,14 +0,0 @@ -#ifndef _LOG_REG_H_ -#define _LOG_REG_H_ - -#include <vector> -#include "sparse_vector.h" -#include "bin_class.h" - -struct LogisticRegression : public Objective { -  double ObjectiveAndGradient(const SparseVector<double>& x, -                              const std::vector<TrainingInstance>& training_instances, -                              SparseVector<double>* g) const; -}; - -#endif diff --git a/dtrain/test/mtm11/mira_update/Hildreth.cpp b/dtrain/test/mtm11/mira_update/Hildreth.cpp deleted file mode 100644 index 0e67eb15..00000000 --- a/dtrain/test/mtm11/mira_update/Hildreth.cpp +++ /dev/null @@ -1,187 +0,0 @@ -#include "Hildreth.h" -#include "sparse_vector.h" - -using namespace std; - -namespace Mira { -   vector<double> Hildreth::optimise (vector< SparseVector<double> >& a, vector<double>& b) { - -    size_t i; -    int max_iter = 10000; -    double eps = 0.00000001; -    double zero = 0.000000000001; - -    vector<double> alpha ( b.size() ); -    vector<double> F ( b.size() ); -    vector<double> kkt ( b.size() ); - -    double max_kkt = -1e100; - -    size_t K = b.size(); - -    double A[K][K]; -    bool is_computed[K]; -    for ( i = 0; i < K; i++ ) -    { -      A[i][i] = a[i].dot(a[i]); -      is_computed[i] = false; -    } - -    int max_kkt_i = -1; - - -    for ( i = 0; i < b.size(); i++ ) -    { -      F[i] = b[i]; -      kkt[i] = F[i]; -      if ( kkt[i] > max_kkt ) -      { -        max_kkt = kkt[i]; -        max_kkt_i = i; -      } -    } - -    int iter = 0; -    double diff_alpha; -    double try_alpha; -    double add_alpha; - -    while ( max_kkt >= eps && iter < max_iter ) -    { - -      diff_alpha = A[max_kkt_i][max_kkt_i] <= zero ? 0.0 : F[max_kkt_i]/A[max_kkt_i][max_kkt_i]; -      try_alpha = alpha[max_kkt_i] + diff_alpha; -      add_alpha = 0.0; - -      if ( try_alpha < 0.0 ) -        add_alpha = -1.0 * alpha[max_kkt_i]; -      else -        add_alpha = diff_alpha; - -      alpha[max_kkt_i] = alpha[max_kkt_i] + add_alpha; - -      if ( !is_computed[max_kkt_i] ) -      { -        for ( i = 0; i < K; i++ ) -        { -          A[i][max_kkt_i] = a[i].dot(a[max_kkt_i] ); // for version 1 -          //A[i][max_kkt_i] = 0; // for version 1 -          is_computed[max_kkt_i] = true; -        } -      } - -      for ( i = 0; i < F.size(); i++ ) -      { -        F[i] -= add_alpha * A[i][max_kkt_i]; -        kkt[i] = F[i]; -        if ( alpha[i] > zero ) -          kkt[i] = abs ( F[i] ); -      } -      max_kkt = -1e100; -      max_kkt_i = -1; -      for ( i = 0; i < F.size(); i++ ) -        if ( kkt[i] > max_kkt ) -        { -          max_kkt = kkt[i]; -          max_kkt_i = i; -        } - -      iter++; -    } - -    return alpha; -  } - -  vector<double> Hildreth::optimise (vector< SparseVector<double> >& a, vector<double>& b, double C) { - -    size_t i; -    int max_iter = 10000; -    double eps = 0.00000001; -    double zero = 0.000000000001; - -    vector<double> alpha ( b.size() ); -    vector<double> F ( b.size() ); -    vector<double> kkt ( b.size() ); - -    double max_kkt = -1e100; - -    size_t K = b.size(); - -    double A[K][K]; -    bool is_computed[K]; -    for ( i = 0; i < K; i++ ) -    { -      A[i][i] = a[i].dot(a[i]); -      is_computed[i] = false; -    } - -    int max_kkt_i = -1; - - -    for ( i = 0; i < b.size(); i++ ) -    { -      F[i] = b[i]; -      kkt[i] = F[i]; -      if ( kkt[i] > max_kkt ) -      { -        max_kkt = kkt[i]; -        max_kkt_i = i; -      } -    } - -    int iter = 0; -    double diff_alpha; -    double try_alpha; -    double add_alpha; - -    while ( max_kkt >= eps && iter < max_iter ) -    { - -      diff_alpha = A[max_kkt_i][max_kkt_i] <= zero ? 0.0 : F[max_kkt_i]/A[max_kkt_i][max_kkt_i]; -      try_alpha = alpha[max_kkt_i] + diff_alpha; -      add_alpha = 0.0; - -      if ( try_alpha < 0.0 ) -        add_alpha = -1.0 * alpha[max_kkt_i]; -      else if (try_alpha > C) -				add_alpha = C - alpha[max_kkt_i]; -      else -        add_alpha = diff_alpha; - -      alpha[max_kkt_i] = alpha[max_kkt_i] + add_alpha; - -      if ( !is_computed[max_kkt_i] ) -      { -        for ( i = 0; i < K; i++ ) -        { -          A[i][max_kkt_i] = a[i].dot(a[max_kkt_i] ); // for version 1 -          //A[i][max_kkt_i] = 0; // for version 1 -          is_computed[max_kkt_i] = true; -        } -      } - -      for ( i = 0; i < F.size(); i++ ) -      { -        F[i] -= add_alpha * A[i][max_kkt_i]; -        kkt[i] = F[i]; -        if (alpha[i] > C - zero) -					kkt[i]=-kkt[i]; -				else if (alpha[i] > zero) -					kkt[i] = abs(F[i]); - -      } -      max_kkt = -1e100; -      max_kkt_i = -1; -      for ( i = 0; i < F.size(); i++ ) -        if ( kkt[i] > max_kkt ) -        { -          max_kkt = kkt[i]; -          max_kkt_i = i; -        } - -      iter++; -    } - -    return alpha; -  } -} diff --git a/dtrain/test/mtm11/mira_update/Hildreth.h b/dtrain/test/mtm11/mira_update/Hildreth.h deleted file mode 100644 index 8d791085..00000000 --- a/dtrain/test/mtm11/mira_update/Hildreth.h +++ /dev/null @@ -1,10 +0,0 @@ -#include "sparse_vector.h" - -namespace Mira { -  class Hildreth { -  public : -    static std::vector<double> optimise(std::vector< SparseVector<double> >& a, std::vector<double>& b); -    static std::vector<double> optimise(std::vector< SparseVector<double> >& a, std::vector<double>& b, double C); -  }; -} - diff --git a/dtrain/test/mtm11/mira_update/dtrain.cc b/dtrain/test/mtm11/mira_update/dtrain.cc deleted file mode 100644 index 933417a4..00000000 --- a/dtrain/test/mtm11/mira_update/dtrain.cc +++ /dev/null @@ -1,532 +0,0 @@ -#include "common.h" -#include "kbestget.h" -#include "util.h" -#include "sample.h" -#include "Hildreth.h" - -#include "ksampler.h" - -// boost compression -#include <boost/iostreams/device/file.hpp>  -#include <boost/iostreams/filtering_stream.hpp> -#include <boost/iostreams/filter/gzip.hpp> -//#include <boost/iostreams/filter/zlib.hpp> -//#include <boost/iostreams/filter/bzip2.hpp> -using namespace boost::iostreams; - - -#ifdef DTRAIN_DEBUG -#include "tests.h" -#endif - - -/* - * init - * - */ -bool -init(int argc, char** argv, po::variables_map* cfg) -{ -  po::options_description conff( "Configuration File Options" ); -  size_t k, N, T, stop, n_pairs; -  string s, f, update_type; -  conff.add_options() -    ( "decoder_config", po::value<string>(),                            "configuration file for cdec" ) -    ( "kbest",          po::value<size_t>(&k)->default_value(DTRAIN_DEFAULT_K),         "k for kbest" ) -    ( "ngrams",         po::value<size_t>(&N)->default_value(DTRAIN_DEFAULT_N),        "N for Ngrams" ) -    ( "filter",         po::value<string>(&f)->default_value("unique"),           "filter kbest list" ) -    ( "epochs",         po::value<size_t>(&T)->default_value(DTRAIN_DEFAULT_T),   "# of iterations T" )  -    ( "input",          po::value<string>(),                                             "input file" ) -    ( "scorer",         po::value<string>(&s)->default_value(DTRAIN_DEFAULT_SCORER), "scoring metric" ) -    ( "output",         po::value<string>(),                                    "output weights file" ) -    ( "stop_after",     po::value<size_t>(&stop)->default_value(0),    "stop after X input sentences" ) -    ( "weights_file",   po::value<string>(),      "input weights file (e.g. from previous iteration)" ) -    ( "wprint",         po::value<string>(),                     "weights to print on each iteration" ) -    ( "noup",           po::value<bool>()->zero_tokens(),                     "do not update weights" ); - -  po::options_description clo("Command Line Options"); -  clo.add_options() -    ( "config,c",         po::value<string>(),              "dtrain config file" ) -    ( "quiet,q",          po::value<bool>()->zero_tokens(),           "be quiet" ) -    ( "update-type",      po::value<string>(&update_type)->default_value("mira"), "perceptron or mira" ) -    ( "n-pairs",          po::value<size_t>(&n_pairs)->default_value(10), "number of pairs used to compute update" ) -    ( "verbose,v",        po::value<bool>()->zero_tokens(),         "be verbose" ) -#ifndef DTRAIN_DEBUG -    ; -#else -    ( "test", "run tests and exit"); -#endif -  po::options_description config_options, cmdline_options; - -  config_options.add(conff); -  cmdline_options.add(clo); -  cmdline_options.add(conff); - -  po::store( parse_command_line(argc, argv, cmdline_options), *cfg ); -  if ( cfg->count("config") ) { -    ifstream config( (*cfg)["config"].as<string>().c_str() ); -    po::store( po::parse_config_file(config, config_options), *cfg ); -  } -  po::notify(*cfg); - -  if ( !cfg->count("decoder_config") || !cfg->count("input") ) {  -    cerr << cmdline_options << endl; -    return false; -  } -  if ( cfg->count("noup") && cfg->count("decode") ) { -    cerr << "You can't use 'noup' and 'decode' at once." << endl; -    return false; -  } -  if ( cfg->count("filter") && (*cfg)["filter"].as<string>() != "unique" -       && (*cfg)["filter"].as<string>() != "no" ) { -    cerr << "Wrong 'filter' type: '" << (*cfg)["filter"].as<string>() << "'." << endl; -  } -  #ifdef DTRAIN_DEBUG        -  if ( !cfg->count("test") ) { -    cerr << cmdline_options << endl; -    return false; -  } -  #endif -  return true; -} - - -// output formatting -ostream& _nopos( ostream& out ) { return out << resetiosflags( ios::showpos ); } -ostream& _pos( ostream& out ) { return out << setiosflags( ios::showpos ); } -ostream& _prec2( ostream& out ) { return out << setprecision(2); } -ostream& _prec5( ostream& out ) { return out << setprecision(5); } - - - - -/* - * dtrain - * - */ -int -main( int argc, char** argv ) -{ -  cout << setprecision( 5 ); -  // handle most parameters -  po::variables_map cfg; -  if ( ! init(argc, argv, &cfg) ) exit(1); // something is wrong  -#ifdef DTRAIN_DEBUG -  if ( cfg.count("test") ) run_tests(); // run tests and exit  -#endif -  bool quiet = false; -  if ( cfg.count("quiet") ) quiet = true; -  bool verbose = false;   -  if ( cfg.count("verbose") ) verbose = true; -  bool noup = false; -  if ( cfg.count("noup") ) noup = true; -  const size_t k = cfg["kbest"].as<size_t>(); -  const size_t N = cfg["ngrams"].as<size_t>();  -  const size_t T = cfg["epochs"].as<size_t>(); -  const size_t stop_after = cfg["stop_after"].as<size_t>(); -  const string filter_type = cfg["filter"].as<string>(); -  const string update_type = cfg["update-type"].as<string>(); -  const size_t n_pairs = cfg["n-pairs"].as<size_t>(); -  const string output_file = cfg["output"].as<string>(); -  if ( !quiet ) { -    cout << endl << "dtrain" << endl << "Parameters:" << endl; -    cout << setw(25) << "k " << k << endl; -    cout << setw(25) << "N " << N << endl; -    cout << setw(25) << "T " << T << endl; -    if ( cfg.count("stop-after") ) -      cout << setw(25) << "stop_after " << stop_after << endl; -    if ( cfg.count("weights") ) -      cout << setw(25) << "weights " << cfg["weights"].as<string>() << endl; -    cout << setw(25) << "input " << "'" << cfg["input"].as<string>() << "'" << endl; -    cout << setw(25) << "filter " << "'" << filter_type << "'" << endl; -  } - -  vector<string> wprint; -  if ( cfg.count("wprint") ) { -    boost::split( wprint, cfg["wprint"].as<string>(), boost::is_any_of(" ") ); -  } - -  // setup decoder, observer -  register_feature_functions(); -  SetSilent(true); -  ReadFile ini_rf( cfg["decoder_config"].as<string>() ); -  if ( !quiet ) -    cout << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; -  Decoder decoder( ini_rf.stream() ); -  //KBestGetter observer( k, filter_type ); -  MT19937 rng; -  KSampler observer( k, &rng ); - -  // scoring metric/scorer -  string scorer_str = cfg["scorer"].as<string>(); -  double (*scorer)( NgramCounts&, const size_t, const size_t, size_t, vector<float> ); -  if ( scorer_str == "bleu" ) { -    scorer = &bleu; -  } else if ( scorer_str == "stupid_bleu" ) { -    scorer = &stupid_bleu; -  } else if ( scorer_str == "smooth_bleu" ) { -    scorer = &smooth_bleu; -  } else if ( scorer_str == "approx_bleu" ) { -    scorer = &approx_bleu; -  } else { -    cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; -    exit(1); -  } -  // for approx_bleu -  NgramCounts global_counts( N ); // counts for 1 best translations -  size_t global_hyp_len = 0;      // sum hypothesis lengths -  size_t global_ref_len = 0;      // sum reference lengths -  // this is all BLEU implmentations -  vector<float> bleu_weights; // we leave this empty -> 1/N; TODO?  -  if ( !quiet ) cout << setw(26) << "scorer '" << scorer_str << "'" << endl << endl; - -  // init weights -  Weights weights; -  if ( cfg.count("weights") ) weights.InitFromFile( cfg["weights"].as<string>() ); -  SparseVector<double> lambdas; -  weights.InitSparseVector( &lambdas ); -  vector<double> dense_weights; - -  // input -  if ( !quiet && !verbose ) -    cout << "(a dot represents " << DTRAIN_DOTS << " lines of input)" << endl; -  string input_fn = cfg["input"].as<string>(); -  ifstream input; -  if ( input_fn != "-" ) input.open( input_fn.c_str() ); -  string in; -  vector<string> in_split; // input: src\tref\tpsg -  vector<string> ref_tok;  // tokenized reference -  vector<WordID> ref_ids;  // reference as vector of WordID -  string grammar_str; - -  // buffer input for t > 0 -  vector<string> src_str_buf;           // source strings, TODO? memory -  vector<vector<WordID> > ref_ids_buf;  // references as WordID vecs -  filtering_ostream grammar_buf;        // written to compressed file in /tmp -  // this is for writing the grammar buffer file -  grammar_buf.push( gzip_compressor() ); -  char grammar_buf_tmp_fn[] = DTRAIN_TMP_DIR"/dtrain-grammars-XXXXXX"; -  mkstemp( grammar_buf_tmp_fn ); -  grammar_buf.push( file_sink(grammar_buf_tmp_fn, ios::binary | ios::trunc) ); -   -  size_t sid = 0, in_sz = 99999999; // sentence id, input size -  double acc_1best_score = 0., acc_1best_model = 0.; -  vector<vector<double> > scores_per_iter; -  double max_score = 0.; -  size_t best_t = 0; -  bool next = false, stop = false; -  double score = 0.; -  size_t cand_len = 0; -  double overall_time = 0.; - -  // for the perceptron/SVM; TODO as params -  double eta = 0.0005; -  double gamma = 0.;//01; // -> SVM -  lambdas.add_value( FD::Convert("__bias"), 0 ); -   -  // for random sampling -  srand ( time(NULL) ); - - -  for ( size_t t = 0; t < T; t++ ) // T epochs -  { - -  time_t start, end;   -  time( &start ); - -  // actually, we need only need this if t > 0 FIXME -  ifstream grammar_file( grammar_buf_tmp_fn, ios_base::in | ios_base::binary ); -  filtering_istream grammar_buf_in; -  grammar_buf_in.push( gzip_decompressor() ); -  grammar_buf_in.push( grammar_file ); - -  // reset average scores -  acc_1best_score = acc_1best_model = 0.; -   -  // reset sentence counter -  sid = 0; -   -  if ( !quiet ) cout << "Iteration #" << t+1 << " of " << T << "." << endl; -   -  while( true ) -  { - -    // get input from stdin or file -    in.clear(); -    next = stop = false; // next iteration, premature stop -    if ( t == 0 ) {     -      if ( input_fn == "-" ) { -        if ( !getline(cin, in) ) next = true; -      } else { -        if ( !getline(input, in) ) next = true;  -      } -    } else { -      if ( sid == in_sz ) next = true; // stop if we reach the end of our input -    } -    // stop after X sentences (but still iterate for those) -    if ( stop_after > 0 && stop_after == sid && !next ) stop = true; -     -    // produce some pretty output -    if ( !quiet && !verbose ) { -        if ( sid == 0 ) cout << " "; -        if ( (sid+1) % (DTRAIN_DOTS) == 0 ) { -            cout << "."; -            cout.flush(); -        } -        if ( (sid+1) % (20*DTRAIN_DOTS) == 0) { -            cout << " " << sid+1 << endl; -            if ( !next && !stop ) cout << " "; -        } -        if ( stop ) { -          if ( sid % (20*DTRAIN_DOTS) != 0 ) cout << " " << sid << endl; -          cout << "Stopping after " << stop_after << " input sentences." << endl; -        } else { -          if ( next ) { -            if ( sid % (20*DTRAIN_DOTS) != 0 ) { -              cout << " " << sid << endl; -            } -          } -        } -    } -     -    // next iteration -    if ( next || stop ) break; - -    // weights -    dense_weights.clear(); -    weights.InitFromVector( lambdas ); -    weights.InitVector( &dense_weights ); -    decoder.SetWeights( dense_weights ); - -    if ( t == 0 ) { -      // handling input -      in_split.clear(); -      boost::split( in_split, in, boost::is_any_of("\t") ); // in_split[0] is id -      // getting reference -      ref_tok.clear(); ref_ids.clear(); -      boost::split( ref_tok, in_split[2], boost::is_any_of(" ") ); -      register_and_convert( ref_tok, ref_ids ); -      ref_ids_buf.push_back( ref_ids ); -      // process and set grammar -      bool broken_grammar = true; -      for ( string::iterator ti = in_split[3].begin(); ti != in_split[3].end(); ti++ ) { -        if ( !isspace(*ti) ) { -          broken_grammar = false; -          break; -        } -      } -      if ( broken_grammar ) continue; -      grammar_str = boost::replace_all_copy( in_split[3], " __NEXT__RULE__ ", "\n" ) + "\n"; // FIXME copy, __ -      grammar_buf << grammar_str << DTRAIN_GRAMMAR_DELIM << endl; -      decoder.SetSentenceGrammarFromString( grammar_str ); -      // decode, kbest -      src_str_buf.push_back( in_split[1] ); -      decoder.Decode( in_split[1], &observer ); -    } else { -      // get buffered grammar -      grammar_str.clear(); -      int i = 1; -      while ( true ) { -        string g;   -        getline( grammar_buf_in, g ); -        if ( g == DTRAIN_GRAMMAR_DELIM ) break; -        grammar_str += g+"\n"; -        i += 1; -      } -      decoder.SetSentenceGrammarFromString( grammar_str ); -      // decode, kbest -      decoder.Decode( src_str_buf[sid], &observer ); -    } - -    // get kbest list -    KBestList* kb; -    //if ( ) { // TODO get from forest -      kb = observer.GetKBest(); -    //} - -    // scoring kbest -    if ( t > 0 ) ref_ids = ref_ids_buf[sid]; -    for ( size_t i = 0; i < kb->GetSize(); i++ ) { -      NgramCounts counts = make_ngram_counts( ref_ids, kb->sents[i], N ); -      // this is for approx bleu -      if ( scorer_str == "approx_bleu" ) { -        if ( i == 0 ) { // 'context of 1best translations' -          global_counts  += counts; -          global_hyp_len += kb->sents[i].size(); -          global_ref_len += ref_ids.size(); -          counts.reset(); -          cand_len = 0; -        } else { -            cand_len = kb->sents[i].size(); -        } -        NgramCounts counts_tmp = global_counts + counts; -        // TODO as param -        score = 0.9 * scorer( counts_tmp, -                              global_ref_len, -                              global_hyp_len + cand_len, N, bleu_weights ); -      } else { -        // other scorers -        cand_len = kb->sents[i].size(); -        score = scorer( counts, -                        ref_ids.size(), -                        kb->sents[i].size(), N, bleu_weights ); -      } - -      kb->scores.push_back( score ); - -      if ( i == 0 ) { -        acc_1best_score += score; -        acc_1best_model += kb->model_scores[i]; -      } - -      if ( verbose ) { -        if ( i == 0 ) cout << "'" << TD::GetString( ref_ids ) << "' [ref]" << endl; -        cout << _prec5 << _nopos << "[hyp " << i << "] " << "'" << TD::GetString( kb->sents[i] ) << "'"; -        cout << " [SCORE=" << score << ",model="<< kb->model_scores[i] << "]" << endl; -        cout << kb->feats[i] << endl; // this is maybe too verbose -      } -    } // Nbest loop - -    if ( verbose ) cout << endl; - - -    // UPDATE WEIGHTS -    if ( !noup ) { - -      TrainingInstances pairs; -      sample_all( kb, pairs, n_pairs ); -        -      vector< SparseVector<double> > featureValueDiffs; -      vector<double> lossMinusModelScoreDiffs; -      for ( TrainingInstances::iterator ti = pairs.begin(); -            ti != pairs.end(); ti++ ) { - -        SparseVector<double> dv; -        if ( ti->first_score - ti->second_score < 0 ) { -          dv = ti->second - ti->first; -          dv.add_value( FD::Convert("__bias"), -1 ); -         -	  featureValueDiffs.push_back(dv); -	  double lossMinusModelScoreDiff = ti->loss_diff - ti->model_score_diff; -	  lossMinusModelScoreDiffs.push_back(lossMinusModelScoreDiff); - -	  if (update_type == "perceptron") { -	    lambdas += dv * eta; -	    cerr << "after perceptron update: " << lambdas << endl << endl; -	  } - -          if ( verbose ) { -            cout << "{{ f("<< ti->first_rank <<") > f(" << ti->second_rank << ") but g(i)="<< ti->first_score <<" < g(j)="<< ti->second_score << " so update" << endl; -            cout << " i  " << TD::GetString(kb->sents[ti->first_rank]) << endl; -            cout << "    " << kb->feats[ti->first_rank] << endl; -            cout << " j  " << TD::GetString(kb->sents[ti->second_rank]) << endl; -            cout << "    " << kb->feats[ti->second_rank] << endl;  -            cout << " diff vec: " << dv << endl; -            cout << " lambdas after update: " << lambdas << endl; -            cout << "}}" << endl; -          } -        } else { -          //SparseVector<double> reg; -          //reg = lambdas * ( 2 * gamma ); -          //lambdas += reg * ( -eta ); -        } -      } -      cerr << "Collected " << featureValueDiffs.size() << " constraints." << endl; - -      double slack = 0.01; -      if (update_type == "mira") { -	if (featureValueDiffs.size() > 0) { -	  vector<double> alphas; -	  if (slack != 0) { -	    alphas = Mira::Hildreth::optimise(featureValueDiffs, lossMinusModelScoreDiffs, slack); -	  } else { -	    alphas = Mira::Hildreth::optimise(featureValueDiffs, lossMinusModelScoreDiffs); -	  } -	   -	  for (size_t k = 0; k < featureValueDiffs.size(); ++k) { -	    lambdas += featureValueDiffs[k] * alphas[k]; -	  } -	  //	  cerr << "after mira update: " << lambdas << endl << endl; -	}       -      } -    } - -    ++sid; - -  } // input loop - -  if ( t == 0 ) in_sz = sid; // remember size (lines) of input - -  // print some stats -  double avg_1best_score = acc_1best_score/(double)in_sz; -  double avg_1best_model = acc_1best_model/(double)in_sz; -  double avg_1best_score_diff, avg_1best_model_diff; -  if ( t > 0 ) { -    avg_1best_score_diff = avg_1best_score - scores_per_iter[t-1][0]; -    avg_1best_model_diff = avg_1best_model - scores_per_iter[t-1][1]; -  } else { -    avg_1best_score_diff = avg_1best_score; -    avg_1best_model_diff = avg_1best_model; -  } -  cout << _prec5 << _pos << "WEIGHTS" << endl; -  for (vector<string>::iterator it = wprint.begin(); it != wprint.end(); it++) { -    cout << setw(16) << *it << " = " << dense_weights[FD::Convert( *it )] << endl; -  } - -  cout << "        ---" << endl; -  cout << _nopos << "      avg score: " << avg_1best_score; -  cout << _pos << " (" << avg_1best_score_diff << ")" << endl; -  cout << _nopos << "avg model score: " << avg_1best_model; -  cout << _pos << " (" << avg_1best_model_diff << ")" << endl; -  vector<double> remember_scores; -  remember_scores.push_back( avg_1best_score ); -  remember_scores.push_back( avg_1best_model ); -  scores_per_iter.push_back( remember_scores ); -  if ( avg_1best_score > max_score ) { -    max_score = avg_1best_score; -    best_t = t; -  } - -  // close open files -  if ( input_fn != "-" ) input.close(); -  close( grammar_buf ); -  grammar_file.close(); - -  time ( &end ); -  double time_dif = difftime( end, start ); -  overall_time += time_dif; -  if ( !quiet ) { -    cout << _prec2 << _nopos << "(time " << time_dif/60. << " min, "; -    cout << time_dif/(double)in_sz<< " s/S)" << endl; -  } -   -  if ( t+1 != T ) cout << endl; - -  if ( noup ) break; - -  // write weights after every epoch                                                                                                                                                -  std::string s; -  std::stringstream out; -  out << t; -  s = out.str(); -  string weights_file = output_file + "." + s; -  weights.WriteToFile(weights_file, true ); - -  } // outer loop - -  unlink( grammar_buf_tmp_fn ); -  if ( !noup ) { -    if ( !quiet ) cout << endl << "writing weights file '" << cfg["output"].as<string>() << "' ..."; -    weights.WriteToFile( cfg["output"].as<string>(), true ); -    if ( !quiet ) cout << "done" << endl; -  } -   -  if ( !quiet ) { -    cout << _prec5 << _nopos << endl << "---" << endl << "Best iteration: "; -    cout << best_t+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl; -    cout << _prec2 << "This took " << overall_time/60. << " min." << endl; -  } - -  return 0; -} - diff --git a/dtrain/test/mtm11/mira_update/sample.h b/dtrain/test/mtm11/mira_update/sample.h deleted file mode 100644 index 5c331bba..00000000 --- a/dtrain/test/mtm11/mira_update/sample.h +++ /dev/null @@ -1,101 +0,0 @@ -#ifndef _DTRAIN_SAMPLE_H_ -#define _DTRAIN_SAMPLE_H_ - - -#include "kbestget.h" - - -namespace dtrain -{ - - -struct TPair -{ -  SparseVector<double> first, second; -  size_t first_rank, second_rank; -  double first_score, second_score; -  double model_score_diff; -  double loss_diff; -}; - -typedef vector<TPair> TrainingInstances; - - -void -  sample_all( KBestList* kb, TrainingInstances &training, size_t n_pairs ) -{ -  std::vector<double> loss_diffs; -  TrainingInstances training_tmp; -  for ( size_t i = 0; i < kb->GetSize()-1; i++ ) { -    for ( size_t j = i+1; j < kb->GetSize(); j++ ) { -      TPair p; -      p.first = kb->feats[i]; -      p.second = kb->feats[j]; -      p.first_rank = i; -      p.second_rank = j; -      p.first_score = kb->scores[i]; -      p.second_score = kb->scores[j]; - -      bool conservative = 1; -      if ( kb->scores[i] - kb->scores[j] < 0 ) { -	// j=hope, i=fear                                                                                                                          -	p.model_score_diff = kb->model_scores[j] - kb->model_scores[i]; -        p.loss_diff = kb->scores[j] - kb->scores[i]; -        training_tmp.push_back(p); -        loss_diffs.push_back(p.loss_diff); -      } -      else if (!conservative) { -	// i=hope, j=fear -	p.model_score_diff = kb->model_scores[i] - kb->model_scores[j]; -        p.loss_diff = kb->scores[i] - kb->scores[j]; -        training_tmp.push_back(p); -        loss_diffs.push_back(p.loss_diff); -      } -    } -  } -   -  if (training_tmp.size() > 0) { -    double threshold; -    std::sort(loss_diffs.begin(), loss_diffs.end()); -    std::reverse(loss_diffs.begin(), loss_diffs.end()); -    threshold = loss_diffs.size() >= n_pairs ? loss_diffs[n_pairs-1] : loss_diffs[loss_diffs.size()-1]; -    cerr << "threshold: " << threshold << endl; -    size_t constraints = 0; -    for (size_t i = 0; (i < training_tmp.size() && constraints < n_pairs); ++i) { -      if (training_tmp[i].loss_diff >= threshold) { -	training.push_back(training_tmp[i]); -	constraints++; -      } -    } -  } -  else { -    cerr << "No pairs selected." << endl; -  } -} - -void -sample_rand( KBestList* kb, TrainingInstances &training ) -{ -  srand( time(NULL) ); -  for ( size_t i = 0; i < kb->GetSize()-1; i++ ) { -    for ( size_t j = i+1; j < kb->GetSize(); j++ ) { -      if ( rand() % 2 ) { -        TPair p; -        p.first = kb->feats[i]; -        p.second = kb->feats[j]; -        p.first_rank = i; -        p.second_rank = j; -        p.first_score = kb->scores[i]; -        p.second_score = kb->scores[j]; -        training.push_back( p ); -      } -    } -  } -} - - -} // namespace - - -#endif - | 
