diff options
Diffstat (limited to 'dtrain/test/example')
| -rw-r--r-- | dtrain/test/example/expected-output | 124 | 
1 files changed, 124 insertions, 0 deletions
| diff --git a/dtrain/test/example/expected-output b/dtrain/test/example/expected-output new file mode 100644 index 00000000..08733dd4 --- /dev/null +++ b/dtrain/test/example/expected-output @@ -0,0 +1,124 @@ +                cdec cfg 'test/example/cdec.ini' +feature: WordPenalty (no config parameters) +State is 0 bytes for feature WordPenalty +feature: KLanguageModel (with config parameters 'test/example/nc-wmt11.en.srilm.gz') +Loading the LM will be faster if you build a binary file. +Reading test/example/nc-wmt11.en.srilm.gz +----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 +**************************************************************************************************** +Loaded 5-gram KLM from test/example/nc-wmt11.en.srilm.gz (MapSize=49581) +State is 98 bytes for feature KLanguageModel test/example/nc-wmt11.en.srilm.gz +feature: RuleIdentityFeatures (no config parameters) +State is 0 bytes for feature RuleIdentityFeatures +feature: RuleNgramFeatures (no config parameters) +State is 0 bytes for feature RuleNgramFeatures +feature: RuleShape (no config parameters) +  Example feature: Shape_S00000_T00000 +State is 0 bytes for feature RuleShape +Seeding random number sequence to 380245307 + +dtrain +Parameters: +                       k 100 +                       N 4 +                       T 3 +                 scorer 'stupid_bleu' +             sample from 'kbest' +                  filter 'uniq' +           learning rate 0.0001 +                   gamma 0 +                   pairs 'XYX' +                   hi lo 0.1 +          pair threshold 0 +          select weights 'VOID' +                  l1 reg 0 'none' +                cdec cfg 'test/example/cdec.ini' +                   input 'test/example/nc-wmt11.1k.gz' +                  output '-' +              stop_after 20 +(a dot represents 10 inputs) +Iteration #1 of 3. + .. 20 +Stopping after 20 input sentences. +WEIGHTS +              Glue = -0.1015 +       WordPenalty = -0.0152 +     LanguageModel = +0.21493 + LanguageModel_OOV = -0.3257 +     PhraseModel_0 = -0.050844 +     PhraseModel_1 = +0.25074 +     PhraseModel_2 = +0.27944 +     PhraseModel_3 = -0.038384 +     PhraseModel_4 = -0.12041 +     PhraseModel_5 = +0.1047 +     PhraseModel_6 = -0.1289 +       PassThrough = -0.3094 +        --- +       1best avg score: 0.17508 (+0.17508) + 1best avg model score: -1.2392 (-1.2392) +           avg # pairs: 1329.8 +        avg # rank err: 649.1 +     avg # margin viol: 677.5 +    non0 feature count: 874 +           avg list sz: 88.6 +           avg f count: 85.643 +(time 0.25 min, 0.75 s/S) + +Iteration #2 of 3. + .. 20 +WEIGHTS +              Glue = -0.0792 +       WordPenalty = -0.056198 +     LanguageModel = +0.31038 + LanguageModel_OOV = -0.4011 +     PhraseModel_0 = +0.072188 +     PhraseModel_1 = +0.11473 +     PhraseModel_2 = +0.049774 +     PhraseModel_3 = -0.18448 +     PhraseModel_4 = -0.12092 +     PhraseModel_5 = +0.1599 +     PhraseModel_6 = -0.0606 +       PassThrough = -0.3848 +        --- +       1best avg score: 0.24015 (+0.065075) + 1best avg model score: -10.131 (-8.8914) +           avg # pairs: 1324.7 +        avg # rank err: 558.65 +     avg # margin viol: 752.85 +    non0 feature count: 1236 +           avg list sz: 84.9 +           avg f count: 88.306 +(time 0.22 min, 0.65 s/S) + +Iteration #3 of 3. + .. 20 +WEIGHTS +              Glue = -0.051 +       WordPenalty = -0.077956 +     LanguageModel = +0.33699 + LanguageModel_OOV = -0.4726 +     PhraseModel_0 = +0.040228 +     PhraseModel_1 = +0.18 +     PhraseModel_2 = +0.15618 +     PhraseModel_3 = -0.098908 +     PhraseModel_4 = -0.036555 +     PhraseModel_5 = +0.1619 +     PhraseModel_6 = +0.0078 +       PassThrough = -0.4563 +        --- +       1best avg score: 0.25527 (+0.015113) + 1best avg model score: -13.906 (-3.7756) +           avg # pairs: 1356.3 +        avg # rank err: 562.1 +     avg # margin viol: 757.35 +    non0 feature count: 1482 +           avg list sz: 86.65 +           avg f count: 87.475 +(time 0.23 min, 0.7 s/S) + +Writing weights file to '-' ... +done + +--- +Best iteration: 3 [SCORE 'stupid_bleu'=0.25527]. +This took 0.7 min. | 
