summaryrefslogtreecommitdiff
path: root/dtrain/score.cc
diff options
context:
space:
mode:
Diffstat (limited to 'dtrain/score.cc')
-rw-r--r--dtrain/score.cc42
1 files changed, 21 insertions, 21 deletions
diff --git a/dtrain/score.cc b/dtrain/score.cc
index d08e87f3..c6d3a05f 100644
--- a/dtrain/score.cc
+++ b/dtrain/score.cc
@@ -47,27 +47,27 @@ make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, size_t N)
*
* NOTE: 0 if one n in {1..N} has 0 count
*/
-double
+score_t
brevity_penaly(const size_t hyp_len, const size_t ref_len)
{
if (hyp_len > ref_len) return 1;
- return exp(1 - (double)ref_len/(double)hyp_len);
+ return exp(1 - (score_t)ref_len/(score_t)hyp_len);
}
-double
+score_t
bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- size_t N, vector<float> weights )
+ size_t N, vector<score_t> weights )
{
if (hyp_len == 0 || ref_len == 0) return 0;
if (ref_len < N) N = ref_len;
- float N_ = (float)N;
+ score_t N_ = (score_t)N;
if (weights.empty())
{
for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
}
- double sum = 0;
+ score_t sum = 0;
for (size_t i = 0; i < N; i++) {
if (counts.clipped[i] == 0 || counts.sum[i] == 0) return 0;
- sum += weights[i] * log((double)counts.clipped[i] / (double)counts.sum[i]);
+ sum += weights[i] * log((score_t)counts.clipped[i] / (score_t)counts.sum[i]);
}
return brevity_penaly(hyp_len, ref_len) * exp(sum);
}
@@ -82,22 +82,22 @@ bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
*
* NOTE: 0 iff no 1gram match
*/
-double
+score_t
stupid_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- size_t N, vector<float> weights )
+ size_t N, vector<score_t> weights )
{
if (hyp_len == 0 || ref_len == 0) return 0;
if (ref_len < N) N = ref_len;
- float N_ = (float)N;
+ score_t N_ = (score_t)N;
if (weights.empty())
{
for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
}
- double sum = 0;
- float add = 0;
+ score_t sum = 0;
+ score_t add = 0;
for (size_t i = 0; i < N; i++) {
if (i == 1) add = 1;
- sum += weights[i] * log(((double)counts.clipped[i] + add) / ((double)counts.sum[i] + add));
+ sum += weights[i] * log(((score_t)counts.clipped[i] + add) / ((score_t)counts.sum[i] + add));
}
return brevity_penaly(hyp_len, ref_len) * exp(sum);
}
@@ -111,21 +111,21 @@ stupid_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
*
* NOTE: max is 0.9375
*/
-double
+score_t
smooth_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- const size_t N, vector<float> weights )
+ const size_t N, vector<score_t> weights )
{
if (hyp_len == 0 || ref_len == 0) return 0;
- float N_ = (float)N;
+ score_t N_ = (score_t)N;
if (weights.empty())
{
for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
}
- double sum = 0;
- float j = 1;
+ score_t sum = 0;
+ score_t j = 1;
for (size_t i = 0; i < N; i++) {
if (counts.clipped[i] == 0 || counts.sum[i] == 0) continue;
- sum += exp((weights[i] * log((double)counts.clipped[i]/(double)counts.sum[i]))) / pow(2, N_-j+1);
+ sum += exp((weights[i] * log((score_t)counts.clipped[i]/(score_t)counts.sum[i]))) / pow(2, N_-j+1);
j++;
}
return brevity_penaly(hyp_len, ref_len) * sum;
@@ -138,9 +138,9 @@ smooth_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
* and Structural Translation Features"
* (Chiang et al. '08)
*/
-double
+score_t
approx_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- const size_t N, vector<float> weights)
+ const size_t N, vector<score_t> weights)
{
return brevity_penaly(hyp_len, ref_len)
* 0.9 * bleu(counts, hyp_len, ref_len, N, weights);