summaryrefslogtreecommitdiff
path: root/decoder/lazy.cc
diff options
context:
space:
mode:
Diffstat (limited to 'decoder/lazy.cc')
-rw-r--r--decoder/lazy.cc178
1 files changed, 178 insertions, 0 deletions
diff --git a/decoder/lazy.cc b/decoder/lazy.cc
new file mode 100644
index 00000000..1e6a94fe
--- /dev/null
+++ b/decoder/lazy.cc
@@ -0,0 +1,178 @@
+#include "hg.h"
+#include "lazy.h"
+#include "fdict.h"
+#include "tdict.h"
+
+#include "lm/enumerate_vocab.hh"
+#include "lm/model.hh"
+#include "search/config.hh"
+#include "search/context.hh"
+#include "search/edge.hh"
+#include "search/edge_queue.hh"
+#include "search/vertex.hh"
+#include "search/vertex_generator.hh"
+#include "util/exception.hh"
+
+#include <boost/scoped_ptr.hpp>
+#include <boost/scoped_array.hpp>
+
+#include <iostream>
+#include <vector>
+
+namespace {
+
+struct MapVocab : public lm::EnumerateVocab {
+ public:
+ MapVocab() {}
+
+ // Do not call after Lookup.
+ void Add(lm::WordIndex index, const StringPiece &str) {
+ const WordID cdec_id = TD::Convert(str.as_string());
+ if (cdec_id >= out_.size()) out_.resize(cdec_id + 1);
+ out_[cdec_id] = index;
+ }
+
+ // Assumes Add has been called and will never be called again.
+ lm::WordIndex FromCDec(WordID id) const {
+ return out_[out_.size() > id ? id : 0];
+ }
+
+ private:
+ std::vector<lm::WordIndex> out_;
+};
+
+class LazyBase {
+ public:
+ LazyBase(const std::vector<weight_t> &weights) :
+ cdec_weights_(weights),
+ weights_(weights[FD::Convert("KLanguageModel")], weights[FD::Convert("KLanguageModel_OOV")], weights[FD::Convert("WordPenalty")]) {
+ std::cerr << "Weights KLanguageModel " << weights_.LM() << " KLanguageModel_OOV " << weights_.OOV() << " WordPenalty " << weights_.WordPenalty() << std::endl;
+ }
+
+ virtual ~LazyBase() {}
+
+ virtual void Search(unsigned int pop_limit, const Hypergraph &hg) const = 0;
+
+ static LazyBase *Load(const char *model_file, const std::vector<weight_t> &weights);
+
+ protected:
+ lm::ngram::Config GetConfig() {
+ lm::ngram::Config ret;
+ ret.enumerate_vocab = &vocab_;
+ return ret;
+ }
+
+ MapVocab vocab_;
+
+ const std::vector<weight_t> &cdec_weights_;
+
+ const search::Weights weights_;
+};
+
+template <class Model> class Lazy : public LazyBase {
+ public:
+ Lazy(const char *model_file, const std::vector<weight_t> &weights) : LazyBase(weights), m_(model_file, GetConfig()) {}
+
+ void Search(unsigned int pop_limit, const Hypergraph &hg) const;
+
+ private:
+ unsigned char ConvertEdge(const search::Context<Model> &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::PartialEdge &out) const;
+
+ const Model m_;
+};
+
+LazyBase *LazyBase::Load(const char *model_file, const std::vector<weight_t> &weights) {
+ lm::ngram::ModelType model_type;
+ if (!lm::ngram::RecognizeBinary(model_file, model_type)) model_type = lm::ngram::PROBING;
+ switch (model_type) {
+ case lm::ngram::PROBING:
+ return new Lazy<lm::ngram::ProbingModel>(model_file, weights);
+ case lm::ngram::REST_PROBING:
+ return new Lazy<lm::ngram::RestProbingModel>(model_file, weights);
+ default:
+ UTIL_THROW(util::Exception, "Sorry this lm type isn't supported yet.");
+ }
+}
+
+void PrintFinal(const Hypergraph &hg, const search::Final &final) {
+ const std::vector<WordID> &words = static_cast<const Hypergraph::Edge*>(final.GetNote().vp)->rule_->e();
+ boost::array<const search::Final*, search::kMaxArity>::const_iterator child(final.Children().begin());
+ for (std::vector<WordID>::const_iterator i = words.begin(); i != words.end(); ++i) {
+ if (*i > 0) {
+ std::cout << TD::Convert(*i) << ' ';
+ } else {
+ PrintFinal(hg, **child++);
+ }
+ }
+}
+
+template <class Model> void Lazy<Model>::Search(unsigned int pop_limit, const Hypergraph &hg) const {
+ boost::scoped_array<search::Vertex> out_vertices(new search::Vertex[hg.nodes_.size()]);
+ search::Config config(weights_, pop_limit);
+ search::Context<Model> context(config, m_);
+
+ for (unsigned int i = 0; i < hg.nodes_.size() - 1; ++i) {
+ search::EdgeQueue queue(context.PopLimit());
+ const Hypergraph::EdgesVector &down_edges = hg.nodes_[i].in_edges_;
+ for (unsigned int j = 0; j < down_edges.size(); ++j) {
+ unsigned int edge_index = down_edges[j];
+ unsigned char arity = ConvertEdge(context, i == hg.nodes_.size() - 2, out_vertices.get(), hg.edges_[edge_index], queue.InitializeEdge());
+ search::Note note;
+ note.vp = &hg.edges_[edge_index];
+ if (arity != 255) queue.AddEdge(arity, note);
+ }
+ search::VertexGenerator vertex_gen(context, out_vertices[i]);
+ queue.Search(context, vertex_gen);
+ }
+ const search::Final *top = out_vertices[hg.nodes_.size() - 2].BestChild();
+ if (!top) {
+ std::cout << "NO PATH FOUND" << std::endl;
+ } else {
+ PrintFinal(hg, *top);
+ std::cout << "||| " << top->Bound() << std::endl;
+ }
+}
+
+template <class Model> unsigned char Lazy<Model>::ConvertEdge(const search::Context<Model> &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::PartialEdge &out) const {
+ const std::vector<WordID> &e = in.rule_->e();
+ std::vector<lm::WordIndex> words;
+ unsigned int terminals = 0;
+ unsigned char nt = 0;
+ out.score = 0.0;
+ for (std::vector<WordID>::const_iterator word = e.begin(); word != e.end(); ++word) {
+ if (*word <= 0) {
+ out.nt[nt] = vertices[in.tail_nodes_[-*word]].RootPartial();
+ if (out.nt[nt].Empty()) return 255;
+ out.score += out.nt[nt].Bound();
+ ++nt;
+ words.push_back(lm::kMaxWordIndex);
+ } else {
+ ++terminals;
+ words.push_back(vocab_.FromCDec(*word));
+ }
+ }
+ for (unsigned char fill = nt; fill < search::kMaxArity; ++fill) {
+ out.nt[fill] = search::kBlankPartialVertex;
+ }
+
+ if (final) {
+ words.push_back(m_.GetVocabulary().EndSentence());
+ }
+
+ out.score += in.rule_->GetFeatureValues().dot(cdec_weights_);
+ out.score -= static_cast<float>(terminals) * context.GetWeights().WordPenalty() / M_LN10;
+ out.score += search::ScoreRule(context, words, final, out.between);
+ return nt;
+}
+
+boost::scoped_ptr<LazyBase> AwfulGlobalLazy;
+
+} // namespace
+
+void PassToLazy(const char *model_file, const std::vector<weight_t> &weights, unsigned int pop_limit, const Hypergraph &hg) {
+ if (!AwfulGlobalLazy.get()) {
+ std::cerr << "Pop limit " << pop_limit << std::endl;
+ AwfulGlobalLazy.reset(LazyBase::Load(model_file, weights));
+ }
+ AwfulGlobalLazy->Search(pop_limit, hg);
+}