summaryrefslogtreecommitdiff
path: root/decoder/ff_const_reorder.cc
diff options
context:
space:
mode:
Diffstat (limited to 'decoder/ff_const_reorder.cc')
-rw-r--r--decoder/ff_const_reorder.cc1118
1 files changed, 1118 insertions, 0 deletions
diff --git a/decoder/ff_const_reorder.cc b/decoder/ff_const_reorder.cc
new file mode 100644
index 00000000..f1a6f7cb
--- /dev/null
+++ b/decoder/ff_const_reorder.cc
@@ -0,0 +1,1118 @@
+#include "ff_const_reorder.h"
+
+#include "filelib.h"
+#include "stringlib.h"
+#include "hg.h"
+#include "sentence_metadata.h"
+#include "hash.h"
+#include "ff_const_reorder_common.h"
+
+#include <sstream>
+#include <string>
+#include <vector>
+#include <stdio.h>
+
+using namespace std;
+using namespace const_reorder;
+
+typedef HASH_MAP<std::string, vector<double> > MapClassifier;
+
+inline bool is_inside(int i, int left, int right) {
+ if (i < left || i > right) return false;
+ return true;
+}
+
+/*
+ * assume i <= j
+ * [i, j] is inside [left, right] or [i, j] equates to [left, right]
+ */
+inline bool is_inside(int i, int j, int left, int right) {
+ if (i >= left && j <= right) return true;
+ return false;
+}
+
+/*
+ * assume i <= j
+ * [i, j] is inside [left, right], but [i, j] not equal to [left, right]
+ */
+inline bool is_proper_inside(int i, int j, int left, int right) {
+ if (i >= left && j <= right && right - left > j - i) return true;
+ return false;
+}
+
+/*
+ * assume i <= j
+ * [i, j] is proper proper inside [left, right]
+ */
+inline bool is_proper_proper_inside(int i, int j, int left, int right) {
+ if (i > left && j < right) return true;
+ return false;
+}
+
+inline bool is_overlap(int left1, int right1, int left2, int right2) {
+ if (is_inside(left1, left2, right2) || is_inside(left2, left1, right1))
+ return true;
+
+ return false;
+}
+
+inline void NewAndCopyCharArray(char** p, const char* q) {
+ if (q != NULL) {
+ (*p) = new char[strlen(q) + 1];
+ strcpy((*p), q);
+ } else
+ (*p) = NULL;
+}
+
+// TODO:to make the alignment more efficient
+struct TargetTranslation {
+ TargetTranslation(int begin_pos, int end_pos,int e_num_word)
+ : begin_pos_(begin_pos),
+ end_pos_(end_pos),
+ e_num_words_(e_num_word),
+ vec_left_most_(end_pos - begin_pos + 1, e_num_word),
+ vec_right_most_(end_pos - begin_pos + 1, -1),
+ vec_f_align_bit_array_(end_pos - begin_pos + 1),
+ vec_e_align_bit_array_(e_num_word) {
+ int len = end_pos - begin_pos + 1;
+ align_.reserve(1.5 * len);
+ }
+
+ void InsertAlignmentPoint(int s, int t) {
+ int i = s - begin_pos_;
+
+ vector<bool>& b = vec_f_align_bit_array_[i];
+ if (b.empty()) b.resize(e_num_words_);
+ b[t] = 1;
+
+ vector<bool>& a = vec_e_align_bit_array_[t];
+ if (a.empty()) a.resize(end_pos_ - begin_pos_ + 1);
+ a[i] = 1;
+
+ align_.push_back({s, t});
+
+ if (t > vec_right_most_[i]) vec_right_most_[i] = t;
+ if (t < vec_left_most_[i]) vec_left_most_[i] = t;
+ }
+
+ /*
+ * given a source span [begin, end], whether its target side is continuous,
+ * return "0": the source span is translated silently
+ * return "1": there is at least on word inside its target span, this word
+ * doesn't align to any word inside [begin, end], but outside [begin, end]
+ * return "2": otherwise
+ */
+ string IsTargetConstinousSpan(int begin, int end) const {
+ int target_begin, target_end;
+ FindLeftRightMostTargetSpan(begin, end, target_begin, target_end);
+ if (target_begin == -1) return "0";
+
+ for (int i = target_begin; i <= target_end; i++) {
+ if (vec_e_align_bit_array_[i].empty()) continue;
+ int j = begin;
+ for (; j <= end; j++) {
+ if (vec_e_align_bit_array_[i][j - begin_pos_]) break;
+ }
+ if (j == end + 1) // e[i] is aligned, but e[i] doesn't align to any
+ // source word in [begin_pos, end_pos]
+ return "1";
+ }
+ return "2";
+ }
+
+ string IsTargetConstinousSpan2(int begin, int end) const {
+ int target_begin, target_end;
+ FindLeftRightMostTargetSpan(begin, end, target_begin, target_end);
+ if (target_begin == -1) return "Unaligned";
+
+ for (int i = target_begin; i <= target_end; i++) {
+ if (vec_e_align_bit_array_[i].empty()) continue;
+ int j = begin;
+ for (; j <= end; j++) {
+ if (vec_e_align_bit_array_[i][j - begin_pos_]) break;
+ }
+ if (j == end + 1) // e[i] is aligned, but e[i] doesn't align to any
+ // source word in [begin_pos, end_pos]
+ return "Discon't";
+ }
+ return "Con't";
+ }
+
+ void FindLeftRightMostTargetSpan(int begin, int end, int& target_begin,
+ int& target_end) const {
+ int b = begin - begin_pos_;
+ int e = end - begin_pos_ + 1;
+
+ target_begin = vec_left_most_[b];
+ target_end = vec_right_most_[b];
+ for (int i = b + 1; i < e; i++) {
+ if (target_begin > vec_left_most_[i]) target_begin = vec_left_most_[i];
+ if (target_end < vec_right_most_[i]) target_end = vec_right_most_[i];
+ }
+ if (target_end == -1) target_begin = -1;
+ return;
+
+ target_begin = e_num_words_;
+ target_end = -1;
+
+ for (int i = begin - begin_pos_; i < end - begin_pos_ + 1; i++) {
+ if (vec_f_align_bit_array_[i].empty()) continue;
+ for (int j = 0; j < target_begin; j++)
+ if (vec_f_align_bit_array_[i][j]) {
+ target_begin = j;
+ break;
+ }
+ }
+ for (int i = end - begin_pos_; i > begin - begin_pos_ - 1; i--) {
+ if (vec_f_align_bit_array_[i].empty()) continue;
+ for (int j = e_num_words_ - 1; j > target_end; j--)
+ if (vec_f_align_bit_array_[i][j]) {
+ target_end = j;
+ break;
+ }
+ }
+
+ if (target_end == -1) target_begin = -1;
+ }
+
+ const uint16_t begin_pos_, end_pos_; // the position in input
+ const uint16_t e_num_words_;
+ vector<AlignmentPoint> align_;
+
+ private:
+ vector<short> vec_left_most_;
+ vector<short> vec_right_most_;
+ vector<vector<bool> > vec_f_align_bit_array_;
+ vector<vector<bool> > vec_e_align_bit_array_;
+};
+
+struct FocusedConstituent {
+ FocusedConstituent(const SParsedTree* pTree) {
+ if (pTree == NULL) return;
+ for (size_t i = 0; i < pTree->m_vecTerminals.size(); i++) {
+ STreeItem* pParent = pTree->m_vecTerminals[i]->m_ptParent;
+
+ while (pParent != NULL) {
+ // if (pParent->m_vecChildren.size() > 1 && pParent->m_iEnd -
+ // pParent->m_iBegin > 5) {
+ // if (pParent->m_vecChildren.size() > 1) {
+ if (true) {
+
+ // do constituent reordering for all children of pParent
+ if (strcmp(pParent->m_pszTerm, "ROOT"))
+ focus_parents_.push_back(pParent);
+ }
+ if (pParent->m_iBrotherIndex != 0) break;
+ pParent = pParent->m_ptParent;
+ }
+ }
+ }
+
+ ~FocusedConstituent() { // TODO
+ focus_parents_.clear();
+ }
+
+ vector<STreeItem*> focus_parents_;
+};
+
+typedef SPredicateItem FocusedPredicate;
+
+struct FocusedSRL {
+ FocusedSRL(const SSrlSentence* srl) {
+ if (srl == NULL) return;
+ for (size_t i = 0; i < srl->m_vecPred.size(); i++) {
+ if (strcmp(srl->m_pTree->m_vecTerminals[srl->m_vecPred[i]->m_iPosition]
+ ->m_ptParent->m_pszTerm,
+ "VA") == 0)
+ continue;
+ focus_predicates_.push_back(
+ new FocusedPredicate(srl->m_pTree, srl->m_vecPred[i]));
+ }
+ }
+
+ ~FocusedSRL() { focus_predicates_.clear(); }
+
+ vector<const FocusedPredicate*> focus_predicates_;
+};
+
+struct ConstReorderFeatureImpl {
+ ConstReorderFeatureImpl(const std::string& param) {
+
+ b_block_feature_ = false;
+ b_order_feature_ = false;
+ b_srl_block_feature_ = false;
+ b_srl_order_feature_ = false;
+
+ vector<string> terms;
+ SplitOnWhitespace(param, &terms);
+ if (terms.size() == 1) {
+ b_block_feature_ = true;
+ b_order_feature_ = true;
+ } else if (terms.size() >= 3) {
+ if (terms[1].compare("1") == 0) b_block_feature_ = true;
+ if (terms[2].compare("1") == 0) b_order_feature_ = true;
+ if (terms.size() == 6) {
+ if (terms[4].compare("1") == 0) b_srl_block_feature_ = true;
+ if (terms[5].compare("1") == 0) b_srl_order_feature_ = true;
+
+ assert(b_srl_block_feature_ || b_srl_order_feature_);
+ }
+
+ } else {
+ assert("ERROR");
+ }
+
+ const_reorder_classifier_left_ = NULL;
+ const_reorder_classifier_right_ = NULL;
+
+ srl_reorder_classifier_left_ = NULL;
+ srl_reorder_classifier_right_ = NULL;
+
+ if (b_order_feature_) {
+ InitializeClassifier((terms[0] + string(".left")).c_str(),
+ &const_reorder_classifier_left_);
+ InitializeClassifier((terms[0] + string(".right")).c_str(),
+ &const_reorder_classifier_right_);
+ }
+
+ if (b_srl_order_feature_) {
+ InitializeClassifier((terms[3] + string(".left")).c_str(),
+ &srl_reorder_classifier_left_);
+ InitializeClassifier((terms[3] + string(".right")).c_str(),
+ &srl_reorder_classifier_right_);
+ }
+
+ parsed_tree_ = NULL;
+ focused_consts_ = NULL;
+
+ srl_sentence_ = NULL;
+ focused_srl_ = NULL;
+
+ map_left_ = NULL;
+ map_right_ = NULL;
+
+ map_srl_left_ = NULL;
+ map_srl_right_ = NULL;
+
+ dict_block_status_ = new Dict();
+ dict_block_status_->Convert("Unaligned", false);
+ dict_block_status_->Convert("Discon't", false);
+ dict_block_status_->Convert("Con't", false);
+ }
+
+ ~ConstReorderFeatureImpl() {
+ if (const_reorder_classifier_left_) delete const_reorder_classifier_left_;
+ if (const_reorder_classifier_right_) delete const_reorder_classifier_right_;
+ if (srl_reorder_classifier_left_) delete srl_reorder_classifier_left_;
+ if (srl_reorder_classifier_right_) delete srl_reorder_classifier_right_;
+ FreeSentenceVariables();
+
+ delete dict_block_status_;
+ }
+
+ static int ReserveStateSize() { return 1 * sizeof(TargetTranslation*); }
+
+ void InitializeInputSentence(const std::string& parse_file,
+ const std::string& srl_file) {
+ FreeSentenceVariables();
+ if (b_srl_block_feature_ || b_srl_order_feature_) {
+ assert(srl_file != "");
+ srl_sentence_ = ReadSRLSentence(srl_file);
+ parsed_tree_ = srl_sentence_->m_pTree;
+ } else {
+ assert(parse_file != "");
+ srl_sentence_ = NULL;
+ parsed_tree_ = ReadParseTree(parse_file);
+ }
+
+ if (b_block_feature_ || b_order_feature_) {
+ focused_consts_ = new FocusedConstituent(parsed_tree_);
+
+ if (b_order_feature_) {
+ // we can do the classifier "off-line"
+ map_left_ = new MapClassifier();
+ map_right_ = new MapClassifier();
+ InitializeConstReorderClassifierOutput();
+ }
+ }
+
+ if (b_srl_block_feature_ || b_srl_order_feature_) {
+ focused_srl_ = new FocusedSRL(srl_sentence_);
+
+ if (b_srl_order_feature_) {
+ map_srl_left_ = new MapClassifier();
+ map_srl_right_ = new MapClassifier();
+ InitializeSRLReorderClassifierOutput();
+ }
+ }
+
+ if (parsed_tree_ != NULL) {
+ size_t i = parsed_tree_->m_vecTerminals.size();
+ vec_target_tran_.reserve(20 * i * i * i);
+ } else
+ vec_target_tran_.reserve(1000000);
+ }
+
+ void SetConstReorderFeature(const Hypergraph::Edge& edge,
+ SparseVector<double>* features,
+ const vector<const void*>& ant_states,
+ void* state) {
+ if (parsed_tree_ == NULL) return;
+
+ short int begin = edge.i_, end = edge.j_ - 1;
+
+ typedef TargetTranslation* PtrTargetTranslation;
+ PtrTargetTranslation* remnant =
+ reinterpret_cast<PtrTargetTranslation*>(state);
+
+ vector<const TargetTranslation*> vec_node;
+ vec_node.reserve(edge.tail_nodes_.size());
+ for (size_t i = 0; i < edge.tail_nodes_.size(); i++) {
+ const PtrTargetTranslation* astate =
+ reinterpret_cast<const PtrTargetTranslation*>(ant_states[i]);
+ vec_node.push_back(astate[0]);
+ }
+
+ int e_num_word = edge.rule_->e_.size();
+ for (size_t i = 0; i < vec_node.size(); i++) {
+ e_num_word += vec_node[i]->e_num_words_;
+ e_num_word--;
+ }
+
+ remnant[0] = new TargetTranslation(begin, end, e_num_word);
+ vec_target_tran_.push_back(remnant[0]);
+
+ // reset the alignment
+ // for the source side, we know its position in source sentence
+ // for the target side, we always assume its starting position is 0
+ unsigned vc = 0;
+ const TRulePtr rule = edge.rule_;
+ std::vector<int> f_index(rule->f_.size());
+ int index = edge.i_;
+ for (unsigned i = 0; i < rule->f_.size(); i++) {
+ f_index[i] = index;
+ const WordID& c = rule->f_[i];
+ if (c < 1)
+ index = vec_node[vc++]->end_pos_ + 1;
+ else
+ index++;
+ }
+ assert(vc == vec_node.size());
+ assert(index == edge.j_);
+
+ std::vector<int> e_index(rule->e_.size());
+ index = 0;
+ vc = 0;
+ for (unsigned i = 0; i < rule->e_.size(); i++) {
+ e_index[i] = index;
+ const WordID& c = rule->e_[i];
+ if (c < 1) {
+ index += vec_node[-c]->e_num_words_;
+ vc++;
+ } else
+ index++;
+ }
+ assert(vc == vec_node.size());
+
+ size_t nt_pos = 0;
+ for (size_t i = 0; i < edge.rule_->f_.size(); i++) {
+ if (edge.rule_->f_[i] > 0) continue;
+
+ // it's an NT
+ size_t j;
+ for (j = 0; j < edge.rule_->e_.size(); j++)
+ if (edge.rule_->e_[j] * -1 == nt_pos) break;
+ assert(j != edge.rule_->e_.size());
+ nt_pos++;
+
+ // i aligns j
+ int eindex = e_index[j];
+ const vector<AlignmentPoint>& align =
+ vec_node[-1 * edge.rule_->e_[j]]->align_;
+ for (size_t k = 0; k < align.size(); k++) {
+ remnant[0]->InsertAlignmentPoint(align[k].s_, eindex + align[k].t_);
+ }
+ }
+ for (size_t i = 0; i < edge.rule_->a_.size(); i++) {
+ int findex = f_index[edge.rule_->a_[i].s_];
+ int eindex = e_index[edge.rule_->a_[i].t_];
+ remnant[0]->InsertAlignmentPoint(findex, eindex);
+ }
+
+ // till now, we finished setting state values
+ // next, use the state values to calculate constituent reorder feature
+ SetConstReorderFeature(begin, end, features, remnant[0],
+ vec_node, f_index);
+ }
+
+ void SetConstReorderFeature(short int begin, short int end,
+ SparseVector<double>* features,
+ const TargetTranslation* target_translation,
+ const vector<const TargetTranslation*>& vec_node,
+ std::vector<int>& /*findex*/) {
+ if (b_srl_block_feature_ || b_srl_order_feature_) {
+ double logprob_srl_reorder_left = 0.0, logprob_srl_reorder_right = 0.0;
+ for (size_t i = 0; i < focused_srl_->focus_predicates_.size(); i++) {
+ const FocusedPredicate* pred = focused_srl_->focus_predicates_[i];
+ if (!is_overlap(begin, end, pred->begin_, pred->end_))
+ continue; // have no overlap between this predicate (with its
+ // argument) and the current edge
+
+ size_t j;
+ for (j = 0; j < vec_node.size(); j++) {
+ if (is_inside(pred->begin_, pred->end_, vec_node[j]->begin_pos_,
+ vec_node[j]->end_pos_))
+ break;
+ }
+ if (j < vec_node.size()) continue;
+
+ vector<int> vecBlockStatus;
+ vecBlockStatus.reserve(pred->vec_items_.size());
+ for (j = 0; j < pred->vec_items_.size(); j++) {
+ const STreeItem* con1 = pred->vec_items_[j]->tree_item_;
+ if (con1->m_iBegin < begin || con1->m_iEnd > end) {
+ vecBlockStatus.push_back(0);
+ continue;
+ } // the node is partially outside the current edge
+
+ string type = target_translation->IsTargetConstinousSpan2(
+ con1->m_iBegin, con1->m_iEnd);
+ vecBlockStatus.push_back(dict_block_status_->Convert(type, false));
+
+ if (!b_srl_block_feature_) continue;
+ // see if the node is covered by an NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con1->m_iEnd, vec_node[k]->begin_pos_,
+ vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+ int f_id = FD::Convert(string(pred->vec_items_[j]->role_) + type);
+ if (f_id) features->add_value(f_id, 1);
+ }
+
+ if (!b_srl_order_feature_) continue;
+
+ vector<int> vecPosition, vecRelativePosition;
+ vector<int> vecRightPosition, vecRelativeRightPosition;
+ vecPosition.reserve(pred->vec_items_.size());
+ vecRelativePosition.reserve(pred->vec_items_.size());
+ vecRightPosition.reserve(pred->vec_items_.size());
+ vecRelativeRightPosition.reserve(pred->vec_items_.size());
+ for (j = 0; j < pred->vec_items_.size(); j++) {
+ const STreeItem* con1 = pred->vec_items_[j]->tree_item_;
+ if (con1->m_iBegin < begin || con1->m_iEnd > end) {
+ vecPosition.push_back(-1);
+ vecRightPosition.push_back(-1);
+ continue;
+ } // the node is partially outside the current edge
+ int left1 = -1, right1 = -1;
+ target_translation->FindLeftRightMostTargetSpan(
+ con1->m_iBegin, con1->m_iEnd, left1, right1);
+ vecPosition.push_back(left1);
+ vecRightPosition.push_back(right1);
+ }
+ fnGetRelativePosition(vecPosition, vecRelativePosition);
+ fnGetRelativePosition(vecRightPosition, vecRelativeRightPosition);
+
+ for (j = 1; j < pred->vec_items_.size(); j++) {
+ const STreeItem* con1 = pred->vec_items_[j - 1]->tree_item_;
+ const STreeItem* con2 = pred->vec_items_[j]->tree_item_;
+
+ if (con1->m_iBegin < begin || con2->m_iEnd > end)
+ continue; // one of the two nodes is partially outside the current
+ // edge
+
+ // both con1 and con2 are covered, need to check if they are covered
+ // by the same NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con2->m_iEnd, vec_node[k]->begin_pos_,
+ vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+
+ // they are not covered bye the same NT
+ string outcome;
+ string key;
+ GenerateKey(pred->vec_items_[j - 1]->tree_item_,
+ pred->vec_items_[j]->tree_item_, vecBlockStatus[j - 1],
+ vecBlockStatus[j], key);
+
+ fnGetOutcome(vecRelativePosition[j - 1], vecRelativePosition[j],
+ outcome);
+ double prob = CalculateConstReorderProb(srl_reorder_classifier_left_,
+ map_srl_left_, key, outcome);
+ // printf("%s %s %f\n", ostr.str().c_str(), outcome.c_str(), prob);
+ logprob_srl_reorder_left += log10(prob);
+
+ fnGetOutcome(vecRelativeRightPosition[j - 1],
+ vecRelativeRightPosition[j], outcome);
+ prob = CalculateConstReorderProb(srl_reorder_classifier_right_,
+ map_srl_right_, key, outcome);
+ logprob_srl_reorder_right += log10(prob);
+ }
+ }
+
+ if (b_srl_order_feature_) {
+ int f_id = FD::Convert("SRLReorderFeatureLeft");
+ if (f_id && logprob_srl_reorder_left != 0.0)
+ features->set_value(f_id, logprob_srl_reorder_left);
+ f_id = FD::Convert("SRLReorderFeatureRight");
+ if (f_id && logprob_srl_reorder_right != 0.0)
+ features->set_value(f_id, logprob_srl_reorder_right);
+ }
+ }
+
+ if (b_block_feature_ || b_order_feature_) {
+ double logprob_const_reorder_left = 0.0,
+ logprob_const_reorder_right = 0.0;
+
+ for (size_t i = 0; i < focused_consts_->focus_parents_.size(); i++) {
+ STreeItem* parent = focused_consts_->focus_parents_[i];
+ if (!is_overlap(begin, end, parent->m_iBegin,
+ parent->m_iEnd))
+ continue; // have no overlap between this parent node and the current
+ // edge
+
+ size_t j;
+ for (j = 0; j < vec_node.size(); j++) {
+ if (is_inside(parent->m_iBegin, parent->m_iEnd,
+ vec_node[j]->begin_pos_, vec_node[j]->end_pos_))
+ break;
+ }
+ if (j < vec_node.size()) continue;
+
+ if (b_block_feature_) {
+ if (parent->m_iBegin >= begin &&
+ parent->m_iEnd <= end) {
+ string type = target_translation->IsTargetConstinousSpan2(
+ parent->m_iBegin, parent->m_iEnd);
+ int f_id = FD::Convert(string(parent->m_pszTerm) + type);
+ if (f_id) features->add_value(f_id, 1);
+ }
+ }
+
+ if (parent->m_vecChildren.size() == 1 || !b_order_feature_) continue;
+
+ vector<int> vecChunkBlock;
+ vecChunkBlock.reserve(parent->m_vecChildren.size());
+
+ for (j = 0; j < parent->m_vecChildren.size(); j++) {
+ STreeItem* con1 = parent->m_vecChildren[j];
+ if (con1->m_iBegin < begin || con1->m_iEnd > end) {
+ vecChunkBlock.push_back(0);
+ continue;
+ } // the node is partially outside the current edge
+
+ string type = target_translation->IsTargetConstinousSpan2(
+ con1->m_iBegin, con1->m_iEnd);
+ vecChunkBlock.push_back(dict_block_status_->Convert(type, false));
+
+ /*if (!b_block_feature_) continue;
+ //see if the node is covered by an NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con1->m_iEnd,
+ vec_node[k]->begin_pos_, vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+ int f_id = FD::Convert(string(con1->m_pszTerm) + type);
+ if (f_id)
+ features->add_value(f_id, 1);*/
+ }
+
+ if (!b_order_feature_) continue;
+
+ vector<int> vecPosition, vecRelativePosition;
+ vector<int> vecRightPosition, vecRelativeRightPosition;
+ vecPosition.reserve(parent->m_vecChildren.size());
+ vecRelativePosition.reserve(parent->m_vecChildren.size());
+ vecRightPosition.reserve(parent->m_vecChildren.size());
+ vecRelativeRightPosition.reserve(parent->m_vecChildren.size());
+ for (j = 0; j < parent->m_vecChildren.size(); j++) {
+ STreeItem* con1 = parent->m_vecChildren[j];
+ if (con1->m_iBegin < begin || con1->m_iEnd > end) {
+ vecPosition.push_back(-1);
+ vecRightPosition.push_back(-1);
+ continue;
+ } // the node is partially outside the current edge
+ int left1 = -1, right1 = -1;
+ target_translation->FindLeftRightMostTargetSpan(
+ con1->m_iBegin, con1->m_iEnd, left1, right1);
+ vecPosition.push_back(left1);
+ vecRightPosition.push_back(right1);
+ }
+ fnGetRelativePosition(vecPosition, vecRelativePosition);
+ fnGetRelativePosition(vecRightPosition, vecRelativeRightPosition);
+
+ for (j = 1; j < parent->m_vecChildren.size(); j++) {
+ STreeItem* con1 = parent->m_vecChildren[j - 1];
+ STreeItem* con2 = parent->m_vecChildren[j];
+
+ if (con1->m_iBegin < begin || con2->m_iEnd > end)
+ continue; // one of the two nodes is partially outside the current
+ // edge
+
+ // both con1 and con2 are covered, need to check if they are covered
+ // by the same NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con2->m_iEnd, vec_node[k]->begin_pos_,
+ vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+
+ // they are not covered bye the same NT
+ string outcome;
+ string key;
+ GenerateKey(parent->m_vecChildren[j - 1], parent->m_vecChildren[j],
+ vecChunkBlock[j - 1], vecChunkBlock[j], key);
+
+ fnGetOutcome(vecRelativePosition[j - 1], vecRelativePosition[j],
+ outcome);
+ double prob = CalculateConstReorderProb(
+ const_reorder_classifier_left_, map_left_, key, outcome);
+ // printf("%s %s %f\n", ostr.str().c_str(), outcome.c_str(), prob);
+ logprob_const_reorder_left += log10(prob);
+
+ fnGetOutcome(vecRelativeRightPosition[j - 1],
+ vecRelativeRightPosition[j], outcome);
+ prob = CalculateConstReorderProb(const_reorder_classifier_right_,
+ map_right_, key, outcome);
+ logprob_const_reorder_right += log10(prob);
+ }
+ }
+
+ if (b_order_feature_) {
+ int f_id = FD::Convert("ConstReorderFeatureLeft");
+ if (f_id && logprob_const_reorder_left != 0.0)
+ features->set_value(f_id, logprob_const_reorder_left);
+ f_id = FD::Convert("ConstReorderFeatureRight");
+ if (f_id && logprob_const_reorder_right != 0.0)
+ features->set_value(f_id, logprob_const_reorder_right);
+ }
+ }
+ }
+
+ private:
+ void Byte_to_Char(unsigned char* str, int n) {
+ str[0] = (n & 255);
+ str[1] = n / 256;
+ }
+ void GenerateKey(const STreeItem* pCon1, const STreeItem* pCon2,
+ int iBlockStatus1, int iBlockStatus2, string& key) {
+ assert(iBlockStatus1 != 0);
+ assert(iBlockStatus2 != 0);
+ unsigned char szTerm[1001];
+ Byte_to_Char(szTerm, pCon1->m_iBegin);
+ Byte_to_Char(szTerm + 2, pCon2->m_iEnd);
+ szTerm[4] = (char)iBlockStatus1;
+ szTerm[5] = (char)iBlockStatus2;
+ szTerm[6] = '\0';
+ // sprintf(szTerm, "%d|%d|%d|%d|%s|%s", pCon1->m_iBegin, pCon1->m_iEnd,
+ // pCon2->m_iBegin, pCon2->m_iEnd, strBlockStatus1.c_str(),
+ // strBlockStatus2.c_str());
+ key = string(szTerm, szTerm + 6);
+ }
+ void InitializeConstReorderClassifierOutput() {
+ if (!b_order_feature_) return;
+ int size_block_status = dict_block_status_->max();
+
+ for (size_t i = 0; i < focused_consts_->focus_parents_.size(); i++) {
+ STreeItem* parent = focused_consts_->focus_parents_[i];
+
+ for (size_t j = 1; j < parent->m_vecChildren.size(); j++) {
+ for (size_t k = 1; k <= size_block_status; k++) {
+ for (size_t l = 1; l <= size_block_status; l++) {
+ ostringstream ostr;
+ GenerateFeature(parsed_tree_, parent, j,
+ dict_block_status_->Convert(k),
+ dict_block_status_->Convert(l), ostr);
+
+ string strKey;
+ GenerateKey(parent->m_vecChildren[j - 1], parent->m_vecChildren[j],
+ k, l, strKey);
+
+ vector<double> vecOutput;
+ const_reorder_classifier_left_->fnEval(ostr.str().c_str(),
+ vecOutput);
+ (*map_left_)[strKey] = vecOutput;
+
+ const_reorder_classifier_right_->fnEval(ostr.str().c_str(),
+ vecOutput);
+ (*map_right_)[strKey] = vecOutput;
+ }
+ }
+ }
+ }
+ }
+
+ void InitializeSRLReorderClassifierOutput() {
+ if (!b_srl_order_feature_) return;
+ int size_block_status = dict_block_status_->max();
+
+ for (size_t i = 0; i < focused_srl_->focus_predicates_.size(); i++) {
+ const FocusedPredicate* pred = focused_srl_->focus_predicates_[i];
+
+ for (size_t j = 1; j < pred->vec_items_.size(); j++) {
+ for (size_t k = 1; k <= size_block_status; k++) {
+ for (size_t l = 1; l <= size_block_status; l++) {
+ ostringstream ostr;
+
+ SArgumentReorderModel::fnGenerateFeature(
+ parsed_tree_, pred->pred_, pred, j,
+ dict_block_status_->Convert(k), dict_block_status_->Convert(l),
+ ostr);
+
+ string strKey;
+ GenerateKey(pred->vec_items_[j - 1]->tree_item_,
+ pred->vec_items_[j]->tree_item_, k, l, strKey);
+
+ vector<double> vecOutput;
+ srl_reorder_classifier_left_->fnEval(ostr.str().c_str(), vecOutput);
+ (*map_srl_left_)[strKey] = vecOutput;
+
+ srl_reorder_classifier_right_->fnEval(ostr.str().c_str(),
+ vecOutput);
+ (*map_srl_right_)[strKey] = vecOutput;
+ }
+ }
+ }
+ }
+ }
+
+ double CalculateConstReorderProb(
+ const Tsuruoka_Maxent* const_reorder_classifier, const MapClassifier* map,
+ const string& key, const string& outcome) {
+ MapClassifier::const_iterator iter = (*map).find(key);
+ assert(iter != map->end());
+ int id = const_reorder_classifier->fnGetClassId(outcome);
+ return iter->second[id];
+ }
+
+ void FreeSentenceVariables() {
+ if (srl_sentence_ != NULL) {
+ delete srl_sentence_;
+ srl_sentence_ = NULL;
+ } else {
+ if (parsed_tree_ != NULL) delete parsed_tree_;
+ parsed_tree_ = NULL;
+ }
+
+ if (focused_consts_ != NULL) delete focused_consts_;
+ focused_consts_ = NULL;
+
+ for (size_t i = 0; i < vec_target_tran_.size(); i++)
+ delete vec_target_tran_[i];
+ vec_target_tran_.clear();
+
+ if (map_left_ != NULL) delete map_left_;
+ map_left_ = NULL;
+ if (map_right_ != NULL) delete map_right_;
+ map_right_ = NULL;
+
+ if (map_srl_left_ != NULL) delete map_srl_left_;
+ map_srl_left_ = NULL;
+ if (map_srl_right_ != NULL) delete map_srl_right_;
+ map_srl_right_ = NULL;
+ }
+
+ void InitializeClassifier(const char* pszFname,
+ Tsuruoka_Maxent** ppClassifier) {
+ (*ppClassifier) = new Tsuruoka_Maxent(pszFname);
+ }
+
+ void GenerateOutcome(const vector<int>& vecPos, vector<string>& vecOutcome) {
+ vecOutcome.clear();
+
+ for (size_t i = 1; i < vecPos.size(); i++) {
+ if (vecPos[i] == -1 || vecPos[i] == vecPos[i - 1]) {
+ vecOutcome.push_back("M"); // monotone
+ continue;
+ }
+
+ if (vecPos[i - 1] == -1) {
+ // vecPos[i] is not -1
+ size_t j = i - 2;
+ while (j > -1 && vecPos[j] == -1) j--;
+
+ size_t k;
+ for (k = 0; k < j; k++) {
+ if (vecPos[k] > vecPos[j] || vecPos[k] <= vecPos[i]) break;
+ }
+ if (k < j) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+
+ for (k = i + 1; k < vecPos.size(); k++)
+ if (vecPos[k] < vecPos[i] && (j == -1 && vecPos[k] >= vecPos[j]))
+ break;
+ if (k < vecPos.size()) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+ vecOutcome.push_back("M");
+ } else {
+ // neither of vecPos[i-1] and vecPos[i] is -1
+ if (vecPos[i - 1] < vecPos[i]) {
+ // monotone or discon't monotone
+ size_t j;
+ for (j = 0; j < i - 1; j++)
+ if (vecPos[j] > vecPos[i - 1] && vecPos[j] <= vecPos[i]) break;
+ if (j < i - 1) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+ for (j = i + 1; j < vecPos.size(); j++)
+ if (vecPos[j] >= vecPos[i - 1] && vecPos[j] < vecPos[i]) break;
+ if (j < vecPos.size()) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+ vecOutcome.push_back("M");
+ } else {
+ // swap or discon't swap
+ size_t j;
+ for (j = 0; j < i - 1; j++)
+ if (vecPos[j] > vecPos[i] && vecPos[j] <= vecPos[i - 1]) break;
+ if (j < i - 1) {
+ vecOutcome.push_back("DS");
+ continue;
+ }
+ for (j = i + 1; j < vecPos.size(); j++)
+ if (vecPos[j] >= vecPos[i] && vecPos[j] < vecPos[i - 1]) break;
+ if (j < vecPos.size()) {
+ vecOutcome.push_back("DS");
+ continue;
+ }
+ vecOutcome.push_back("S");
+ }
+ }
+ }
+
+ assert(vecOutcome.size() == vecPos.size() - 1);
+ }
+
+ void fnGetRelativePosition(const vector<int>& vecLeft,
+ vector<int>& vecPosition) {
+ vecPosition.clear();
+
+ vector<float> vec;
+ vec.reserve(vecLeft.size());
+ for (size_t i = 0; i < vecLeft.size(); i++) {
+ if (vecLeft[i] == -1) {
+ if (i == 0)
+ vec.push_back(-1);
+ else
+ vec.push_back(vecLeft[i - 1] + 0.1);
+ } else
+ vec.push_back(vecLeft[i]);
+ }
+
+ for (size_t i = 0; i < vecLeft.size(); i++) {
+ int count = 0;
+
+ for (size_t j = 0; j < vecLeft.size(); j++) {
+ if (j == i) continue;
+ if (vec[j] < vec[i]) {
+ count++;
+ } else if (vec[j] == vec[i] && j < i) {
+ count++;
+ }
+ }
+ vecPosition.push_back(count);
+ }
+
+ for (size_t i = 1; i < vecPosition.size(); i++) {
+ if (vecPosition[i - 1] == vecPosition[i]) {
+ for (size_t j = 0; j < vecLeft.size(); j++) cout << vecLeft[j] << " ";
+ cout << "\n";
+ assert(false);
+ }
+ }
+ }
+
+ inline void fnGetOutcome(int i1, int i2, string& strOutcome) {
+ assert(i1 != i2);
+ if (i1 < i2) {
+ if (i2 > i1 + 1)
+ strOutcome = string("DM");
+ else
+ strOutcome = string("M");
+ } else {
+ if (i1 > i2 + 1)
+ strOutcome = string("DS");
+ else
+ strOutcome = string("S");
+ }
+ }
+
+ // features in constituent_reorder_model.cc
+ void GenerateFeature(const SParsedTree* pTree, const STreeItem* pParent,
+ int iPos, const string& strBlockStatus1,
+ const string& strBlockStatus2, ostringstream& ostr) {
+ STreeItem* pCon1, *pCon2;
+ pCon1 = pParent->m_vecChildren[iPos - 1];
+ pCon2 = pParent->m_vecChildren[iPos];
+
+ string left_label = string(pCon1->m_pszTerm);
+ string right_label = string(pCon2->m_pszTerm);
+ string parent_label = string(pParent->m_pszTerm);
+
+ vector<string> vec_other_right_sibling;
+ for (int i = iPos + 1; i < pParent->m_vecChildren.size(); i++)
+ vec_other_right_sibling.push_back(
+ string(pParent->m_vecChildren[i]->m_pszTerm));
+ if (vec_other_right_sibling.size() == 0)
+ vec_other_right_sibling.push_back(string("NULL"));
+ vector<string> vec_other_left_sibling;
+ for (int i = 0; i < iPos - 1; i++)
+ vec_other_left_sibling.push_back(
+ string(pParent->m_vecChildren[i]->m_pszTerm));
+ if (vec_other_left_sibling.size() == 0)
+ vec_other_left_sibling.push_back(string("NULL"));
+
+ // generate features
+ // f1
+ ostr << "f1=" << left_label << "_" << right_label << "_" << parent_label;
+ // f2
+ for (int i = 0; i < vec_other_right_sibling.size(); i++)
+ ostr << " f2=" << left_label << "_" << right_label << "_" << parent_label
+ << "_" << vec_other_right_sibling[i];
+ // f3
+ for (int i = 0; i < vec_other_left_sibling.size(); i++)
+ ostr << " f3=" << left_label << "_" << right_label << "_" << parent_label
+ << "_" << vec_other_left_sibling[i];
+ // f4
+ ostr << " f4=" << left_label << "_" << right_label << "_"
+ << pTree->m_vecTerminals[pCon1->m_iHeadWord]->m_ptParent->m_pszTerm;
+ // f5
+ ostr << " f5=" << left_label << "_" << right_label << "_"
+ << pTree->m_vecTerminals[pCon1->m_iHeadWord]->m_pszTerm;
+ // f6
+ ostr << " f6=" << left_label << "_" << right_label << "_"
+ << pTree->m_vecTerminals[pCon2->m_iHeadWord]->m_ptParent->m_pszTerm;
+ // f7
+ ostr << " f7=" << left_label << "_" << right_label << "_"
+ << pTree->m_vecTerminals[pCon2->m_iHeadWord]->m_pszTerm;
+ // f8
+ ostr << " f8=" << left_label << "_" << right_label << "_"
+ << strBlockStatus1;
+ // f9
+ ostr << " f9=" << left_label << "_" << right_label << "_"
+ << strBlockStatus2;
+
+ // f10
+ ostr << " f10=" << left_label << "_" << parent_label;
+ // f11
+ ostr << " f11=" << right_label << "_" << parent_label;
+ }
+
+ SParsedTree* ReadParseTree(const std::string& parse_file) {
+ SParseReader* reader = new SParseReader(parse_file.c_str(), false);
+ SParsedTree* tree = reader->fnReadNextParseTree();
+ // assert(tree != NULL);
+ delete reader;
+ return tree;
+ }
+
+ SSrlSentence* ReadSRLSentence(const std::string& srl_file) {
+ SSrlSentenceReader* reader = new SSrlSentenceReader(srl_file.c_str());
+ SSrlSentence* srl = reader->fnReadNextSrlSentence();
+ // assert(srl != NULL);
+ delete reader;
+ return srl;
+ }
+
+ private:
+ Tsuruoka_Maxent* const_reorder_classifier_left_;
+ Tsuruoka_Maxent* const_reorder_classifier_right_;
+
+ Tsuruoka_Maxent* srl_reorder_classifier_left_;
+ Tsuruoka_Maxent* srl_reorder_classifier_right_;
+
+ MapClassifier* map_left_;
+ MapClassifier* map_right_;
+
+ MapClassifier* map_srl_left_;
+ MapClassifier* map_srl_right_;
+
+ SParsedTree* parsed_tree_;
+ FocusedConstituent* focused_consts_;
+ vector<TargetTranslation*> vec_target_tran_;
+
+ bool b_order_feature_;
+ bool b_block_feature_;
+
+ bool b_srl_block_feature_;
+ bool b_srl_order_feature_;
+ SSrlSentence* srl_sentence_;
+ FocusedSRL* focused_srl_;
+
+ Dict* dict_block_status_;
+};
+
+ConstReorderFeature::ConstReorderFeature(const std::string& param) {
+ pimpl_ = new ConstReorderFeatureImpl(param);
+ SetStateSize(ConstReorderFeatureImpl::ReserveStateSize());
+ SetIgnoredStateSize(ConstReorderFeatureImpl::ReserveStateSize());
+ name_ = "ConstReorderFeature";
+}
+
+ConstReorderFeature::~ConstReorderFeature() { // TODO
+ delete pimpl_;
+}
+
+void ConstReorderFeature::PrepareForInput(const SentenceMetadata& smeta) {
+ string parse_file = smeta.GetSGMLValue("parse");
+ if (parse_file.empty()) {
+ parse_file = smeta.GetSGMLValue("src_tree");
+ }
+ string srl_file = smeta.GetSGMLValue("srl");
+ assert(!(parse_file == "" && srl_file == ""));
+
+ pimpl_->InitializeInputSentence(parse_file, srl_file);
+}
+
+void ConstReorderFeature::TraversalFeaturesImpl(
+ const SentenceMetadata& /* smeta */, const Hypergraph::Edge& edge,
+ const vector<const void*>& ant_states, SparseVector<double>* features,
+ SparseVector<double>* /*estimated_features*/, void* state) const {
+ pimpl_->SetConstReorderFeature(edge, features, ant_states, state);
+}
+
+string ConstReorderFeature::usage(bool show_params, bool show_details) {
+ ostringstream out;
+ out << "ConstReorderFeature";
+ if (show_params) {
+ out << " model_file_prefix [const_block=1 const_order=1] [srl_block=0 "
+ "srl_order=0]"
+ << "\nParameters:\n"
+ << " const_{block,order}: enable/disable constituency constraints.\n"
+ << " src_{block,order}: enable/disable semantic role labeling "
+ "constraints.\n";
+ }
+ if (show_details) {
+ out << "\n"
+ << "Soft reordering constraint features from "
+ "http://www.aclweb.org/anthology/P14-1106. To train the classifers, "
+ "use utils/const_reorder_model_trainer for constituency reordering "
+ "constraints and utils/argument_reorder_model_trainer for semantic "
+ "role labeling reordering constraints.\n"
+ << "Input segments should provide path to parse tree (resp. SRL parse) "
+ "as \"parse\" (resp. \"srl\") properties.\n";
+ }
+ return out.str();
+}
+
+boost::shared_ptr<FeatureFunction> CreateConstReorderModel(
+ const std::string& param) {
+ ConstReorderFeature* ret = new ConstReorderFeature(param);
+ return boost::shared_ptr<FeatureFunction>(ret);
+}