diff options
| -rw-r--r-- | training/latent_svm/Makefile.am | 6 | ||||
| -rw-r--r-- | training/latent_svm/latent_svm.cc | 412 | 
2 files changed, 418 insertions, 0 deletions
| diff --git a/training/latent_svm/Makefile.am b/training/latent_svm/Makefile.am new file mode 100644 index 00000000..673b9159 --- /dev/null +++ b/training/latent_svm/Makefile.am @@ -0,0 +1,6 @@ +bin_PROGRAMS = latent_svm + +latent_svm_SOURCES = latent_svm.cc +latent_svm_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz + +AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval diff --git a/training/latent_svm/latent_svm.cc b/training/latent_svm/latent_svm.cc new file mode 100644 index 00000000..ab9c1d5d --- /dev/null +++ b/training/latent_svm/latent_svm.cc @@ -0,0 +1,412 @@ +/* +Points to note regarding variable names: +total_loss and prev_loss actually refer not to loss, but the metric (usually BLEU) +*/ +#include <sstream> +#include <iostream> +#include <vector> +#include <cassert> +#include <cmath> + +//boost libraries +#include <boost/shared_ptr.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +//cdec libraries +#include "config.h" +#include "hg_sampler.h" +#include "sentence_metadata.h" +#include "scorer.h" +#include "verbose.h" +#include "viterbi.h" +#include "hg.h" +#include "prob.h" +#include "kbest.h" +#include "ff_register.h" +#include "decoder.h" +#include "filelib.h" +#include "fdict.h" +#include "weights.h" +#include "sparse_vector.h" +#include "sampler.h" + +using namespace std; +using boost::shared_ptr; +namespace po = boost::program_options; + +bool invert_score;  +boost::shared_ptr<MT19937> rng; //random seed ptr + +void RandomPermutation(int len, vector<int>* p_ids) { +  vector<int>& ids = *p_ids; +  ids.resize(len); +  for (int i = 0; i < len; ++i) ids[i] = i; +  for (int i = len; i > 0; --i) { +    int j = rng->next() * i; +    if (j == i) i--; +    swap(ids[i-1], ids[j]); +  }   +} + +bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { +  po::options_description opts("Configuration options"); +  opts.add_options() +        ("weights,w",po::value<string>(),"[REQD] Input feature weights file") +        ("input,i",po::value<string>(),"[REQD] Input source file for development set") +        ("passes,p", po::value<int>()->default_value(15), "Number of passes through the training data") +        ("weights_write_interval,n", po::value<int>()->default_value(1000), "Number of lines between writing out weights") +        ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)") +        ("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)") +        ("regularizer_strength,C", po::value<double>()->default_value(0.01), "regularization strength") +        ("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Cost function is -mt_metric_scale*BLEU") +        ("costaug_log_bleu,l", "Flag converts BLEU to log space. Cost function is thus -mt_metric_scale*log(BLEU). Not on by default") +        ("average,A", "Average the weights (this is a weighted average due to the scaling factor)") +        ("mu,u", po::value<double>()->default_value(0.0), "weight (between 0 and 1) to scale model score by for oracle selection") +        ("stepsize_param,a", po::value<double>()->default_value(0.01), "Stepsize parameter, during optimization") +        ("stepsize_reduce,t", "Divide step size by sqrt(number of examples seen so far), as per Ratliff et al., 2007") +	("metric_threshold,T", po::value<double>()->default_value(0.0), "Threshold for diff between oracle BLEU and cost-aug BLEU for updating the weights") +	("check_positive,P", "Check that the loss is positive before updating") +        ("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles") +        ("best_ever,b", "Keep track of the best hypothesis we've ever seen (metric score), and use that as the reference") +        ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") +        ("decoder_config,c",po::value<string>(),"Decoder configuration file"); +  po::options_description clo("Command line options"); +  clo.add_options() +        ("config", po::value<string>(), "Configuration file") +        ("help,h", "Print this help message and exit"); +  po::options_description dconfig_options, dcmdline_options; +  dconfig_options.add(opts); +  dcmdline_options.add(opts).add(clo); +   +  po::store(parse_command_line(argc, argv, dcmdline_options), *conf); +  if (conf->count("config")) { +    ifstream config((*conf)["config"].as<string>().c_str()); +    po::store(po::parse_config_file(config, dconfig_options), *conf); +  } +  po::notify(*conf); + +  if (conf->count("help") || !conf->count("weights") || !conf->count("input") || !conf->count("decoder_config") || !conf->count("reference")) { +    cerr << dcmdline_options << endl; +    return false; +  } +  return true; +} + +double scaling_trick = 1; // see http://blog.smola.org/post/940672544/fast-quadratic-regularization-for-online-learning +/*computes and returns cost augmented score for negative example selection*/ +double cost_augmented_score(const LogVal<double> model_score, const double mt_metric_score, const double mt_metric_scale, const bool logbleu) { +  if(logbleu) { +    if(mt_metric_score != 0) +      // NOTE: log(model_score) is just the model score feature weights * features +      return log(model_score) * scaling_trick + (- mt_metric_scale * log(mt_metric_score)); +    else +      return -1000000; +  } +  // NOTE: log(model_score) is just the model score feature weights * features +  return log(model_score) * scaling_trick + (- mt_metric_scale * mt_metric_score); +} + +/*computes and returns mu score, for oracle selection*/ +double muscore(const vector<weight_t>& feature_weights, const SparseVector<double>& feature_values, const double mt_metric_score, const double mu, const bool logbleu) { +  if(logbleu) { +    if(mt_metric_score != 0) +      return feature_values.dot(feature_weights) * mu + (1 - mu) * log(mt_metric_score); +    else +      return feature_values.dot(feature_weights) * mu + (1 - mu) * (-1000000);  // log(0) is -inf +  } +  return feature_values.dot(feature_weights) * mu + (1 - mu) * mt_metric_score; +} + +static const double kMINUS_EPSILON = -1e-6; + +struct HypothesisInfo { +  SparseVector<double> features; +  double mt_metric_score; +  // The model score changes when the feature weights change, so it is not stored here +  // It must be recomputed every time +}; + +struct GoodOracle { +  shared_ptr<HypothesisInfo> good; +}; + +struct TrainingObserver : public DecoderObserver { +  TrainingObserver(const int k, +                   const DocScorer& d, +                   vector<GoodOracle>* o, +                   const vector<weight_t>& feat_weights, +                   const double metric_scale, +                   const double Mu, +                   const bool bestever, +                   const bool LogBleu) : ds(d), feature_weights(feat_weights), oracles(*o), kbest_size(k), mt_metric_scale(metric_scale), mu(Mu), best_ever(bestever), log_bleu(LogBleu) {} +  const DocScorer& ds; +  const vector<weight_t>& feature_weights; +  vector<GoodOracle>& oracles; +  shared_ptr<HypothesisInfo> cur_best; +  shared_ptr<HypothesisInfo> cur_costaug_best; +  shared_ptr<HypothesisInfo> cur_ref;  +  const int kbest_size; +  const double mt_metric_scale; +  const double mu; +  const bool best_ever; +  const bool log_bleu; + +  const HypothesisInfo& GetCurrentBestHypothesis() const { +    return *cur_best; +  } + +  const HypothesisInfo& GetCurrentCostAugmentedHypothesis() const { +    return *cur_costaug_best; +  } + +  const HypothesisInfo& GetCurrentReference() const { +    return *cur_ref;  +  } + +  virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { +    UpdateOracles(smeta.GetSentenceID(), *hg); +  } + +  shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double metric) { +    shared_ptr<HypothesisInfo> h(new HypothesisInfo); +    h->features = feats; +    h->mt_metric_score = metric; +    return h; +  } + +  void UpdateOracles(int sent_id, const Hypergraph& forest) { +    //shared_ptr<HypothesisInfo>& cur_ref = oracles[sent_id].good; +    cur_ref = oracles[sent_id].good;  +    if(!best_ever) +      cur_ref.reset(); + +    KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, kbest_size); +    double costaug_best_score = 0; + +    for (int i = 0; i < kbest_size; ++i) { +      const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = +        kbest.LazyKthBest(forest.nodes_.size() - 1, i); +      if (!d) break; +      double mt_metric_score = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore(); //this might need to change!! +      const SparseVector<double>& feature_vals = d->feature_values;  +      double costaugmented_score = cost_augmented_score(d->score, mt_metric_score, mt_metric_scale, log_bleu); //note that d->score, i.e., model score, is passed in +      if (i == 0) { //i.e., setting up cur_best to be model score highest, and initializing costaug_best +        cur_best = MakeHypothesisInfo(feature_vals, mt_metric_score); +        cur_costaug_best = cur_best; +        costaug_best_score = costaugmented_score;  +      } +      if (costaugmented_score > costaug_best_score) {   // kbest_mira's cur_bad, i.e., "fear" derivation +        cur_costaug_best = MakeHypothesisInfo(feature_vals, mt_metric_score); +        costaug_best_score = costaugmented_score; +      } +      double cur_muscore = mt_metric_score; +      if (!cur_ref)   // kbest_mira's cur_good, i.e., "hope" derivation +        cur_ref =  MakeHypothesisInfo(feature_vals, cur_muscore); +      else { +          double cur_ref_muscore = cur_ref->mt_metric_score; +          if(mu > 0) { //select oracle with mixture of model score and BLEU +              cur_ref_muscore =  muscore(feature_weights, cur_ref->features, cur_ref->mt_metric_score, mu, log_bleu); +              cur_muscore = muscore(feature_weights, d->feature_values, mt_metric_score, mu, log_bleu); +          } +          if (cur_muscore > cur_ref_muscore) //replace oracle +            cur_ref = MakeHypothesisInfo(feature_vals, mt_metric_score); +      } +    } +  } +}; + +void ReadTrainingCorpus(const string& fname, vector<string>* c) { +  ReadFile rf(fname); +  istream& in = *rf.stream(); +  string line; +  while(in) { +    getline(in, line); +    if (!in) break; +    c->push_back(line); +  } +} + +bool ApproxEqual(double a, double b) { +  if (a == b) return true; +  return (fabs(a-b)/fabs(b)) < 0.000001; +} + +int main(int argc, char** argv) { +  register_feature_functions(); +  SetSilent(true);  // turn off verbose decoder output + +  po::variables_map conf; +  if (!InitCommandLine(argc, argv, &conf)) return 1; + +  if (conf.count("random_seed")) +    rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); +  else +    rng.reset(new MT19937); + +  const bool best_ever = conf.count("best_ever") > 0; +  vector<string> corpus; +  ReadTrainingCorpus(conf["input"].as<string>(), &corpus); + +  const string metric_name = conf["mt_metric"].as<string>(); //set up scoring; this may need to be changed!! +   +  ScoreType type = ScoreTypeFromString(metric_name); +  if (type == TER) { +    invert_score = true; +  } else { +    invert_score = false; +  }  +  DocScorer ds(type, conf["reference"].as<vector<string> >(), ""); +  cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl; +  if (ds.size() != corpus.size()) { +    cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n"; +    return 1; +  } + +  ReadFile ini_rf(conf["decoder_config"].as<string>()); +  Decoder decoder(ini_rf.stream()); + +  // load initial weights +  vector<weight_t>& decoder_weights = decoder.CurrentWeightVector(); //equivalent to "dense_weights" vector in kbest_mira.cc +  SparseVector<weight_t> sparse_weights; //equivaelnt to  kbest_mira.cc "lambdas" +  Weights::InitFromFile(conf["weights"].as<string>(), &decoder_weights); +  Weights::InitSparseVector(decoder_weights, &sparse_weights); + +  //initializing other algorithm and output parameters +  const double c = conf["regularizer_strength"].as<double>(); +  const int weights_write_interval = conf["weights_write_interval"].as<int>(); +  const double mt_metric_scale = conf["mt_metric_scale"].as<double>(); +  const double mu = conf["mu"].as<double>(); +  const double metric_threshold = conf["metric_threshold"].as<double>(); +  const double stepsize_param = conf["stepsize_param"].as<double>(); //step size in structured SGD optimization step +  const bool stepsize_reduce = conf.count("stepsize_reduce") > 0;  +  const bool costaug_log_bleu = conf.count("costaug_log_bleu") > 0; +  const bool average = conf.count("average") > 0; +  const bool checkpositive = conf.count("check_positive") > 0; + +  assert(corpus.size() > 0); +  vector<GoodOracle> oracles(corpus.size()); +  TrainingObserver observer(conf["k_best_size"].as<int>(),  // kbest size +                            ds,                             // doc scorer +                            &oracles, +                            decoder_weights, +                            mt_metric_scale, +                            mu, +                            best_ever, +                            costaug_log_bleu); +  int cur_sent = 0; +  int line_count = 0; +  int normalizer = 0;  +  double total_loss = 0; +  double prev_loss = 0; +  int dots = 0;             // progess bar +  int cur_pass = 0; +  SparseVector<double> tot; +  tot += sparse_weights; //add initial weights to total +  normalizer++; //add 1 to normalizer +  int max_iteration = conf["passes"].as<int>(); +  string msg = "# LatentSVM tuned weights"; +  vector<int> order; +  int interval_counter = 0; +  RandomPermutation(corpus.size(), &order); //shuffle corpus +  while (line_count <= max_iteration * corpus.size()) { //loop over all (passes * num sentences) examples +    //if ((interval_counter * 40 / weights_write_interval) > dots) { ++dots; cerr << '.'; } //check this +    if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.';} +    if (interval_counter == weights_write_interval) { //i.e., we need to write out weights +      sparse_weights *= scaling_trick; +      tot *= scaling_trick; +      scaling_trick = 1; +      cerr << " [SENTENCE NUMBER= " << cur_sent << "\n"; +      cerr << " [AVG METRIC LAST INTERVAL =" << ((total_loss - prev_loss) / weights_write_interval) << "]\n"; +      cerr << " [AVG METRIC THIS PASS THUS FAR =" << (total_loss / cur_sent) << "]\n"; +      cerr << " [TOTAL LOSS: =" << total_loss << "\n"; +      Weights::ShowLargestFeatures(decoder_weights); +      //dots = 0; +      interval_counter = 0; +      prev_loss = total_loss; +      if (average){ +	SparseVector<double> x = tot; +	x /= normalizer; +	ostringstream sa; +	sa << "weights.latentsvm-" << line_count/weights_write_interval << "-avg.gz"; +	x.init_vector(&decoder_weights); +	Weights::WriteToFile(sa.str(), decoder_weights, true, &msg);  +      } +      else { +	ostringstream os; +	os << "weights.latentsvm-" << line_count/weights_write_interval << ".gz"; +	sparse_weights.init_vector(&decoder_weights); +	Weights::WriteToFile(os.str(), decoder_weights, true, &msg); +      } +    } +    if (corpus.size() == cur_sent) { //i.e., finished a pass +      //cerr << " [AVG METRIC LAST PASS=" << (document_metric_score / corpus.size()) << "]\n"; +      cerr << " [AVG METRIC LAST PASS=" << (total_loss / corpus.size()) << "]\n"; +      cerr << " TOTAL LOSS: " << total_loss << "\n"; +      Weights::ShowLargestFeatures(decoder_weights); +      cur_sent = 0; +      total_loss = 0; +      dots = 0; +      if(average) { +        SparseVector<double> x = tot;  +        x /= normalizer; +        ostringstream sa; +        sa << "weights.latentsvm-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "-avg.gz"; +        x.init_vector(&decoder_weights); +        Weights::WriteToFile(sa.str(), decoder_weights, true, &msg); +      } +      else { +	ostringstream os; +	os << "weights.latentsvm-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz"; +	Weights::WriteToFile(os.str(), decoder_weights, true, &msg);	 +      } +      cur_pass++; +      RandomPermutation(corpus.size(), &order); +    } +    if (cur_sent == 0) { //i.e., starting a new pass +      cerr << "PASS " << (line_count / corpus.size() + 1) << endl; +    } +    sparse_weights.init_vector(&decoder_weights);   // copy sparse_weights to the decoder weights +    decoder.SetId(order[cur_sent]); //assign current sentence +    decoder.Decode(corpus[order[cur_sent]], &observer);  // decode/update oracles + +    const HypothesisInfo& cur_best = observer.GetCurrentBestHypothesis(); //model score best +    const HypothesisInfo& cur_costaug = observer.GetCurrentCostAugmentedHypothesis(); //(model + cost) best; cost = -metric_scale*log(BLEU) or -metric_scale*BLEU +    //const HypothesisInfo& cur_ref = *oracles[order[cur_sent]].good; //this oracle-best line only picks based on BLEU +    const HypothesisInfo& cur_ref = observer.GetCurrentReference();  //if mu > 0, this mu-mixed oracle will be picked; otherwise, only on BLEU +    total_loss += cur_best.mt_metric_score;  + +    double step_size = stepsize_param; +    if (stepsize_reduce){       // w_{t+1} = w_t - stepsize_t * grad(Loss)  +        step_size  /= (sqrt(cur_sent+1.0));  +    } +    //actual update step - compute gradient, and modify sparse_weights +    if(cur_ref.mt_metric_score - cur_costaug.mt_metric_score > metric_threshold) { +      const double loss = (cur_costaug.features.dot(decoder_weights) - cur_ref.features.dot(decoder_weights)) * scaling_trick + mt_metric_scale * (cur_ref.mt_metric_score - cur_costaug.mt_metric_score); +      if (!checkpositive || loss > 0.0) { //can update either all the time if check positive is off, or only when loss > 0 if it's on +	sparse_weights -= cur_costaug.features * step_size / ((1.0-2.0*step_size*c)*scaling_trick);    // cost augmented hyp orig - +	sparse_weights += cur_ref.features * step_size / ((1.0-2.0*step_size*c)*scaling_trick);        // ref orig + +      } +    } +    scaling_trick *= (1.0 - 2.0 * step_size * c); + +    tot += sparse_weights; //for averaging purposes +    normalizer++; //for averaging purposes +    line_count++; +    interval_counter++; +    cur_sent++; +  } +  cerr << endl; +  if(average) { +    tot /= normalizer; +    tot.init_vector(decoder_weights); +    msg = "# Latent SSVM tuned weights (averaged vector)"; +    Weights::WriteToFile("weights.latentsvm-final-avg.gz", decoder_weights, true, &msg);  +    cerr << "Optimization complete.\n" << "AVERAGED WEIGHTS: weights.latentsvm-final-avg.gz\n"; +  } else { +    Weights::WriteToFile("weights.latentsvm-final.gz", decoder_weights, true, &msg);     +    cerr << "Optimization complete.\n"; +  } +  return 0; +} + | 
