summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore77
-rw-r--r--mteval/ns.cc4
-rw-r--r--mteval/ns.h4
-rw-r--r--mteval/ns_ter.h1
-rwxr-xr-xpro-train/dist-pro.pl4
-rw-r--r--pro-train/mr_pro_map.cc37
6 files changed, 98 insertions, 29 deletions
diff --git a/.gitignore b/.gitignore
index 5efe37b0..ab8bf2c7 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,3 +1,46 @@
+mira/kbest_mira
+sa-extract/calignment.c
+sa-extract/calignment.so
+sa-extract/cdat.c
+sa-extract/cdat.so
+sa-extract/cfloatlist.c
+sa-extract/cfloatlist.so
+sa-extract/cintlist.c
+sa-extract/cintlist.so
+sa-extract/clex.c
+sa-extract/clex.so
+sa-extract/cn.pyc
+sa-extract/context_model.pyc
+sa-extract/cstrmap.c
+sa-extract/cstrmap.so
+sa-extract/csuf.c
+sa-extract/csuf.so
+sa-extract/cveb.c
+sa-extract/cveb.so
+sa-extract/lcp.c
+sa-extract/lcp.so
+sa-extract/log.pyc
+sa-extract/manager.pyc
+sa-extract/model.pyc
+sa-extract/monitor.pyc
+sa-extract/precomputation.c
+sa-extract/precomputation.so
+sa-extract/rule.c
+sa-extract/rule.so
+sa-extract/rulefactory.c
+sa-extract/rulefactory.so
+sa-extract/sgml.pyc
+sa-extract/sym.c
+sa-extract/sym.so
+training/mpi_flex_optimize
+training/test_ngram
+utils/dict_test
+utils/logval_test
+utils/mfcr_test
+utils/phmt
+utils/small_vector_test
+utils/ts
+utils/weights_test
pro-train/.deps
pro-train/mr_pro_map
pro-train/mr_pro_reduce
@@ -38,8 +81,8 @@ utils/.deps/
utils/libutils.a
*swp
*.o
-vest/sentserver
-vest/sentclient
+dpmert/sentserver
+dpmert/sentclient
gi/pyp-topics/src/contexts_lexer.cc
config.guess
config.sub
@@ -61,12 +104,12 @@ training/mr_em_map_adapter
training/mr_reduce_to_weights
training/optimize_test
training/plftools
-vest/fast_score
-vest/lo_test
-vest/mr_vest_map
-vest/mr_vest_reduce
-vest/scorer_test
-vest/union_forests
+dpmert/fast_score
+dpmert/lo_test
+dpmert/mr_dpmert_map
+dpmert/mr_dpmert_reduce
+dpmert/scorer_test
+dpmert/union_forests
Makefile
Makefile.in
aclocal.m4
@@ -99,11 +142,11 @@ training/Makefile.in
training/*.o
training/grammar_convert
training/model1
-vest/.deps/
-vest/Makefile
-vest/Makefile.in
-vest/mr_vest_generate_mapper_input
-vest/*.o
+dpmert/.deps/
+dpmert/Makefile
+dpmert/Makefile.in
+dpmert/mr_dpmert_generate_mapper_input
+dpmert/*.o
decoder/logval_test
extools/build_lexical_translation
extools/filter_grammar
@@ -124,7 +167,6 @@ m4/ltoptions.m4
m4/ltsugar.m4
m4/ltversion.m4
m4/lt~obsolete.m4
-vest/mbr_kbest
extools/featurize_grammar
extools/filter_score_grammar
gi/posterior-regularisation/prjava/build/
@@ -143,3 +185,10 @@ gi/posterior-regularisation/prjava/lib/prjava-20100715.jar
*.ps
*.toc
*~
+gi/pf/align-lexonly
+gi/pf/align-lexonly-pyp
+gi/pf/condnaive
+mteval/scorer_test
+phrasinator/gibbs_train_plm
+phrasinator/gibbs_train_plm_notables
+.*
diff --git a/mteval/ns.cc b/mteval/ns.cc
index da678b84..788f809a 100644
--- a/mteval/ns.cc
+++ b/mteval/ns.cc
@@ -21,6 +21,10 @@ map<string, EvaluationMetric*> EvaluationMetric::instances_;
SegmentEvaluator::~SegmentEvaluator() {}
EvaluationMetric::~EvaluationMetric() {}
+bool EvaluationMetric::IsErrorMetric() const {
+ return false;
+}
+
struct DefaultSegmentEvaluator : public SegmentEvaluator {
DefaultSegmentEvaluator(const vector<vector<WordID> >& refs, const EvaluationMetric* em) : refs_(refs), em_(em) {}
void Evaluate(const vector<WordID>& hyp, SufficientStats* out) const {
diff --git a/mteval/ns.h b/mteval/ns.h
index d88c263b..4e4c6975 100644
--- a/mteval/ns.h
+++ b/mteval/ns.h
@@ -94,6 +94,10 @@ class EvaluationMetric {
public:
const std::string& MetricId() const { return name_; }
+ // returns true for metrics like WER and TER where lower scores are better
+ // false for metrics like BLEU and METEOR where higher scores are better
+ virtual bool IsErrorMetric() const;
+
virtual unsigned SufficientStatisticsVectorSize() const;
virtual float ComputeScore(const SufficientStats& stats) const = 0;
virtual std::string DetailedScore(const SufficientStats& stats) const;
diff --git a/mteval/ns_ter.h b/mteval/ns_ter.h
index 3190fc1b..c5c25413 100644
--- a/mteval/ns_ter.h
+++ b/mteval/ns_ter.h
@@ -9,6 +9,7 @@ class TERMetric : public EvaluationMetric {
TERMetric() : EvaluationMetric("TER") {}
public:
+ virtual bool IsErrorMetric() const;
virtual unsigned SufficientStatisticsVectorSize() const;
virtual std::string DetailedScore(const SufficientStats& stats) const;
virtual void ComputeSufficientStatistics(const std::vector<WordID>& hyp,
diff --git a/pro-train/dist-pro.pl b/pro-train/dist-pro.pl
index ba9cdc06..31258fa6 100755
--- a/pro-train/dist-pro.pl
+++ b/pro-train/dist-pro.pl
@@ -12,7 +12,7 @@ use POSIX ":sys_wait_h";
my $QSUB_CMD = qsub_args(mert_memory());
my $default_jobs = env_default_jobs();
-my $VEST_DIR="$SCRIPT_DIR/../vest";
+my $VEST_DIR="$SCRIPT_DIR/../dpmert";
require "$VEST_DIR/libcall.pl";
# Default settings
@@ -338,7 +338,7 @@ while (1){
$mapoutput =~ s/mapinput/mapoutput/;
push @mapoutputs, "$dir/splag.$im1/$mapoutput";
$o2i{"$dir/splag.$im1/$mapoutput"} = "$dir/splag.$im1/$shard";
- my $script = "$MAPPER -s $srcFile -l $metric $refs_comma_sep -w $inweights -K $dir/kbest < $dir/splag.$im1/$shard > $dir/splag.$im1/$mapoutput";
+ my $script = "$MAPPER -s $srcFile -m $metric $refs_comma_sep -w $inweights -K $dir/kbest < $dir/splag.$im1/$shard > $dir/splag.$im1/$mapoutput";
if ($use_make) {
my $script_file = "$dir/scripts/map.$shard";
open F, ">$script_file" or die "Can't write $script_file: $!";
diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc
index 0a9b75d7..52b67f32 100644
--- a/pro-train/mr_pro_map.cc
+++ b/pro-train/mr_pro_map.cc
@@ -13,11 +13,12 @@
#include "filelib.h"
#include "stringlib.h"
#include "weights.h"
-#include "scorer.h"
#include "inside_outside.h"
#include "hg_io.h"
#include "kbest.h"
#include "viterbi.h"
+#include "ns.h"
+#include "ns_docscorer.h"
// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011)
@@ -80,7 +81,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
("kbest_repository,K",po::value<string>()->default_value("./kbest"),"K-best list repository (directory)")
("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)")
- ("loss_function,l",po::value<string>()->default_value("ibm_bleu"), "Loss function being optimized")
+ ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract")
("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)")
("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)")
@@ -109,9 +110,12 @@ struct HypInfo {
HypInfo(const vector<WordID>& h, const SparseVector<weight_t>& feats) : hyp(h), g_(-100.0f), x(feats) {}
// lazy evaluation
- double g(const SentenceScorer& scorer) const {
- if (g_ == -100.0f)
- g_ = scorer.ScoreCandidate(hyp)->ComputeScore();
+ double g(const SegmentEvaluator& scorer, const EvaluationMetric* metric) const {
+ if (g_ == -100.0f) {
+ SufficientStats ss;
+ scorer.Evaluate(hyp, &ss);
+ g_ = metric->ComputeScore(ss);
+ }
return g_;
}
vector<WordID> hyp;
@@ -233,15 +237,21 @@ struct DiffOrder {
}
};
-void Sample(const unsigned gamma, const unsigned xi, const vector<HypInfo>& J_i, const SentenceScorer& scorer, const bool invert_score, vector<TrainingInstance>* pv) {
+void Sample(const unsigned gamma,
+ const unsigned xi,
+ const vector<HypInfo>& J_i,
+ const SegmentEvaluator& scorer,
+ const EvaluationMetric* metric,
+ vector<TrainingInstance>* pv) {
+ const bool invert_score = metric->IsErrorMetric();
vector<TrainingInstance> v1, v2;
float avg_diff = 0;
for (unsigned i = 0; i < gamma; ++i) {
const size_t a = rng->inclusive(0, J_i.size() - 1)();
const size_t b = rng->inclusive(0, J_i.size() - 1)();
if (a == b) continue;
- float ga = J_i[a].g(scorer);
- float gb = J_i[b].g(scorer);
+ float ga = J_i[a].g(scorer, metric);
+ float gb = J_i[b].g(scorer, metric);
bool positive = gb < ga;
if (invert_score) positive = !positive;
const float gdiff = fabs(ga - gb);
@@ -288,11 +298,12 @@ int main(int argc, char** argv) {
rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
rng.reset(new MT19937);
- const string loss_function = conf["loss_function"].as<string>();
+ const string evaluation_metric = conf["evaluation_metric"].as<string>();
+
+ EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric);
+ DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
+ cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;
- ScoreType type = ScoreTypeFromString(loss_function);
- DocScorer ds(type, conf["reference"].as<vector<string> >(), conf["source"].as<string>());
- cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl;
Hypergraph hg;
string last_file;
ReadFile in_read(conf["input"].as<string>());
@@ -335,7 +346,7 @@ int main(int argc, char** argv) {
Dedup(&J_i);
WriteKBest(kbest_file, J_i);
- Sample(gamma, xi, J_i, *ds[sent_id], (type == TER), &v);
+ Sample(gamma, xi, J_i, *ds[sent_id], metric, &v);
for (unsigned i = 0; i < v.size(); ++i) {
const TrainingInstance& vi = v[i];
cout << vi.y << "\t" << vi.x << endl;