summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--decoder/Makefile.am2
-rw-r--r--decoder/cdec_ff.cc2
-rw-r--r--decoder/dwarf.cc3209
-rw-r--r--decoder/dwarf.h286
-rw-r--r--decoder/ff_dwarf.cc893
-rw-r--r--decoder/ff_dwarf.h100
-rw-r--r--decoder/grammar.cc1
-rw-r--r--decoder/rule_lexer.l13
-rw-r--r--decoder/trule.h26
9 files changed, 4520 insertions, 12 deletions
diff --git a/decoder/Makefile.am b/decoder/Makefile.am
index be04fb31..f0c5f73e 100644
--- a/decoder/Makefile.am
+++ b/decoder/Makefile.am
@@ -38,6 +38,8 @@ libcdec_a_SOURCES = \
maxtrans_blunsom.cc \
cdec_ff.cc \
cfg.cc \
+ dwarf.cc \
+ ff_dwarf.cc \
apply_fsa_models.cc \
rule_lexer.cc \
fst_translator.cc \
diff --git a/decoder/cdec_ff.cc b/decoder/cdec_ff.cc
index a12b532f..c87396a6 100644
--- a/decoder/cdec_ff.cc
+++ b/decoder/cdec_ff.cc
@@ -14,6 +14,7 @@
#include "ff_register.h"
#include "ff_charset.h"
#include "ff_wordset.h"
+#include "ff_dwarf.h"
#ifdef HAVE_GLC
#include <cdec/ff_glc.h>
@@ -70,6 +71,7 @@ void register_feature_functions() {
ff_registry.Register("LexicalTranslationTrigger", new FFFactory<LexicalTranslationTrigger>);
ff_registry.Register("WordPairFeatures", new FFFactory<WordPairFeatures>);
ff_registry.Register("WordSet", new FFFactory<WordSet>);
+ ff_registry.Register("Dwarf", new FFFactory<Dwarf>);
#ifdef HAVE_GLC
ff_registry.Register("ContextCRF", new FFFactory<Model1Features>);
#endif
diff --git a/decoder/dwarf.cc b/decoder/dwarf.cc
new file mode 100644
index 00000000..7968fee2
--- /dev/null
+++ b/decoder/dwarf.cc
@@ -0,0 +1,3209 @@
+#include "dwarf.h"
+#include "tdict.h"
+#include "wordid.h"
+#include "lattice.h"
+#include "ff_dwarf.h"
+#include <assert.h>
+#include <algorithm>
+#include <ostream>
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+#include <map>
+#include <set>
+#include <boost/functional/hash.hpp>
+#include <tr1/unordered_map>
+#include <boost/tuple/tuple.hpp>
+
+using namespace std;
+using namespace std::tr1;
+using namespace boost::tuples;
+using namespace boost;
+
+Alignment::Alignment() {
+ //unordered_map<std::vector<WordID>,int> XX;
+ _I=0;
+ _J=0;
+ kSOS = TD::Convert("<s>");
+ kEOS = TD::Convert("</s>");
+ kUNK = TD::Convert("**UNKNOWN**");
+ SourceFWAntsIdxs = new int*[MAX_ARITY];
+ SourceFWAntsAbsIdxs = new int*[MAX_ARITY];
+ TargetFWAntsIdxs = new int*[MAX_ARITY];
+ SourceAntsIdxs = new int*[MAX_ARITY];
+ TargetAntsIdxs = new int*[MAX_ARITY];
+ AntsAl = new int*[MAX_ARITY];
+ for (int idx=0; idx<MAX_ARITY; idx++) {
+ SourceAntsIdxs[idx] = new int[40];
+ SourceFWAntsIdxs[idx] = new int[40];
+ SourceFWAntsAbsIdxs[idx] = new int[40];
+ TargetAntsIdxs[idx] = new int[40];
+ TargetFWAntsIdxs[idx] = new int[40];
+ AntsAl[idx] = new int[40];
+ }
+ for (int j=0; j<MAX_WORDS; j++)
+ for (int i=0; i<MAX_WORDS; i++) _matrix[j][i]=false;
+ for (int j=0; j<MAX_WORDS; j++) {
+ _tSpan[j][0]=MINIMUM_INIT;
+ _sSpan[j][1]=MAXIMUM_INIT;
+ }
+ for (int i=0; i<MAX_WORDS; i++) {
+ _sSpan[i][0]=MINIMUM_INIT;
+ _sSpan[i][1]=MAXIMUM_INIT;
+ }
+ alpha_oris=0.1;
+ alpha_orit=0.1;
+ alpha_doms=0.1;
+ alpha_domt=0.1;
+ beta_oris=0.1;
+ beta_orit=0.1;
+ beta_doms=0.1;
+ beta_domt=0.1;
+}
+
+void Alignment::set(int j,int i) {
+// create a link between j and i, update their corresponding span accordingly
+ if (DEBUG) cerr << "set(" << j << "," << i << ")" << endl;
+ assert(0<=j && j<MAX_WORDS);
+ assert(0<=i && i<MAX_WORDS);
+ if (0<=j && j<MAX_WORDS && 0<=i && i<MAX_WORDS) {
+ _matrix[j][i] = true;
+ _tSpan[j][0]=least(i,_tSpan[j][0]);
+ _tSpan[j][1]=most(i,_tSpan[j][1]);
+ _sSpan[i][0]=least(j,_sSpan[i][0]);
+ _sSpan[i][1]=most(j,_sSpan[i][1]);
+ }
+ _J=most(j+1,_J);
+ _I=most(i+1,_I);
+}
+
+void Alignment::reset(int j,int i) { //probably won't be used, since the alignment is not dynamic
+// remove the link between j and i, update their corresponding span accordingly
+ if (DEBUG) cerr << "reset(" << j << "," << i << ")" << endl;
+ assert(0<=j && j<MAX_WORDS);
+ assert(0<=i && i<MAX_WORDS);
+ _matrix[j][i] = false;
+ if (j==_sSpan[i][0] || j==_sSpan[i][1]) {
+ int min=MINIMUM_INIT;
+ int max=MAXIMUM_INIT;
+ for (int idx=_sSpan[i][0]; idx<=_sSpan[i][1]; idx++) {
+ if (_matrix[idx][i]) {
+ min=least(min,idx);
+ max=most(max,idx);
+ }
+ }
+ _sSpan[i][0]=min;
+ _sSpan[i][1]=max;
+ }
+ if (i==_tSpan[j][0] || i==_tSpan[j][1]) {
+ int min=MINIMUM_INIT;
+ int max=MAXIMUM_INIT;
+ for (int idx=_tSpan[j][0]; idx<=_tSpan[j][1]; idx++) {
+ if (_matrix[j][idx]) {
+ min=least(min,idx);
+ max=most(max,idx);
+ }
+ }
+ _tSpan[j][0]=min;
+ _tSpan[j][1]=max;
+ }
+}
+
+int Alignment::targetOf(int j, int start) {
+ assert(j>=0);
+ if (start==-1) start = _tSpan[j][0];
+ if (_tSpan[j][0]==MINIMUM_INIT) return -1;
+ for (int idx=start; idx<=_tSpan[j][1]; idx++) {
+ if (_matrix[j][idx]) return idx;
+ }
+ return -1;
+}
+
+int Alignment::sourceOf(int i, int start) {
+ assert(i>=0);
+ if (start==-1) start = _sSpan[i][0];
+ if (_sSpan[i][0]==MINIMUM_INIT) return -1;
+ for (int idx=start; idx<=_sSpan[i][1]; idx++) {
+ if (_matrix[idx][i]) return idx;
+ }
+ return -1;
+}
+
+void Alignment::clearAls(int prevJ, int prevI) {
+ for (int j=0; j<=prevJ; j++) {
+ for (int i=0; i<prevI; i++) {
+ _matrix[j][i]=false;
+ }
+ }
+ for (int j=0; j<=prevJ; j++) {
+ _tSpan[j][0] = MINIMUM_INIT;
+ _tSpan[j][1] = MAXIMUM_INIT;
+ }
+ for (int i=0; i<=prevI; i++) {
+ _sSpan[i][0] = MINIMUM_INIT;
+ _sSpan[i][1] = MAXIMUM_INIT;
+ }
+ _J=0;
+ _I=0;
+}
+
+int Alignment::DominanceSource(int fw1, int fw2) {
+ // Dominance of fw1 and fw2
+ // 0 -> neither, 1 -> leftFirst, 2 -> rightFirst, 3 -> dontCare
+ if (DEBUG) cerr << "DominanceSource(" << fw1 << "," << fw2 << ")" << endl;
+ //cerr << TD::Convert(_f[fw1]) << "," << TD::Convert(_f[fw2]) << endl;
+ //cerr << AsString() << endl;
+ int dom = 0;
+ curr_al.push_back(fw1); curr_al.push_back(fw2);
+ if (doms_hash.find(curr_al)==doms_hash.end()) {
+ int* block = blockSource(fw1,fw2);
+ //cerr << "block = " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[0]==fw1) {
+ int tfw10 = _tSpan[fw1][0];
+ int tfw11 = _tSpan[fw1][1];
+ //cerr << "tfw = " << tfw10 << "," << tfw11 << endl;
+ if (tfw11<0) {
+ dom+=1;
+ } else {
+ if ((block[2]==tfw10 || block[3]==tfw11)) dom+=1;
+ }
+ }
+ if (block[1]==fw2) {
+ int tfw20 = _tSpan[fw2][0];
+ int tfw21 = _tSpan[fw2][1];
+ //cerr << "tfw = " << tfw20 << "," << tfw21 << endl;
+ if (tfw21<0) {
+ dom+=2;
+ } else {
+ if ((block[2]==tfw20 || block[3]==tfw21)) dom+=2;
+ }
+ }
+ delete block;
+ doms_hash.insert(pair<vector<int>,int>(curr_al,dom));
+ } else {
+ dom = doms_hash[curr_al];
+ }
+ if (DEBUG) cerr << " dom = " << dom << endl;
+ curr_al.pop_back(); curr_al.pop_back();
+ return dom;
+}
+
+vector<int> Alignment::DominanceSource4Sampler(int fw1, int fw2) {
+ if (DEBUG) cerr << "DominanceSource4Sampler(" << fw1 << "," << fw2 << ")" << endl;
+ int dom = 0;
+ int* block = blockSource(fw1,fw2);
+ //cerr << "block = " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[0]==fw1) {
+ int tfw10 = _tSpan[fw1][0];
+ int tfw11 = _tSpan[fw1][1];
+ //cerr << "tfw = " << tfw10 << "," << tfw11 << endl;
+ if (tfw11<0) {
+ dom+=1;
+ } else {
+ if ((block[2]==tfw10 || block[3]==tfw11)) dom+=1;
+ }
+ }
+ if (block[1]==fw2) {
+ int tfw20 = _tSpan[fw2][0];
+ int tfw21 = _tSpan[fw2][1];
+ //cerr << "tfw = " << tfw20 << "," << tfw21 << endl;
+ if (tfw21<0) {
+ dom+=2;
+ } else {
+ if ((block[2]==tfw20 || block[3]==tfw21)) dom+=2;
+ }
+ }
+ if (DEBUG) cerr << "doms = " << dom << endl;
+ vector<int> ret;
+ ret.push_back(dom); ret.push_back(block[0]); ret.push_back(block[1]);
+ ret.push_back(block[2]); ret.push_back(block[3]);
+ delete block;
+ return ret;
+}
+
+int Alignment::DominanceTarget(int fw1, int fw2) {
+ int dom = 0;
+ curr_al.push_back(fw1); curr_al.push_back(fw2);
+ if (domt_hash.find(curr_al)==domt_hash.end()) {
+ int* block = blockTarget(fw1,fw2);
+ if (block[2]==fw1) {
+ int sfw10 = _sSpan[fw1][0];
+ int sfw11 = _sSpan[fw1][1];
+ if (sfw11<0) {
+ dom+=1;
+ } else {
+ if (block[0]==sfw10 || block[1]==sfw11) dom+=1;
+ }
+ }
+ if (block[3]==fw2) {
+ int sfw20 = _sSpan[fw2][0];
+ int sfw21 = _sSpan[fw2][0];
+ if (sfw21<0) {
+ dom+=2;
+ } else {
+ if (block[0]==sfw20 || block[1]==sfw21) dom+=2;
+ }
+ }
+ delete block;
+ domt_hash.insert(pair<vector<int>,int>(curr_al,dom));
+ } else {
+ dom = domt_hash[curr_al];
+ }
+ curr_al.pop_back(); curr_al.pop_back();
+ return dom;
+}
+
+vector<int> Alignment::DominanceTarget4Sampler(int fw1, int fw2) {
+ int dom = 0;
+ int* block = blockTarget(fw1,fw2);
+ if (block[2]==fw1) {
+ int sfw10 = _sSpan[fw1][0];
+ int sfw11 = _sSpan[fw1][1];
+ if (sfw11<0) {
+ dom+=1;
+ } else {
+ if (block[0]==sfw10 || block[1]==sfw11) dom+=1;
+ }
+ }
+ if (block[3]==fw2) {
+ int sfw20 = _sSpan[fw2][0];
+ int sfw21 = _sSpan[fw2][0];
+ if (sfw21<0) {
+ dom+=2;
+ } else {
+ if (block[0]==sfw20 || block[1]==sfw21) dom+=2;
+ }
+ }
+ vector<int> ret;
+ ret.push_back(dom); ret.push_back(block[0]); ret.push_back(block[1]);
+ ret.push_back(block[2]); ret.push_back(block[3]);
+ delete block;
+ return ret;
+}
+
+void Alignment::OrientationSource(int fw, int* oril, int* orir, bool Lcompute, bool Rcompute) {
+ OrientationSource(fw,fw,oril,orir,Lcompute,Rcompute);
+}
+
+vector<int> Alignment::OrientationSourceLeft4Sampler(int fw) {
+ return OrientationSourceLeft4Sampler(fw,fw);
+}
+
+vector<int> Alignment::OrientationSourceLeft4Sampler(int fw0, int fw1) {
+ if (DEBUG) cerr << "OrientationSourceLeft4Sampler(" << fw0 << "," << fw1 << ")" << endl;
+ int oril = 0;
+ int N0=fw0-1;
+ while (N0>=0) {
+ if (minTSpan(N0)!=MINIMUM_INIT) break;
+ N0--;
+ }
+ int N1=fw1+1;
+ while (N1<_J) {
+ if (minTSpan(N1)!=MINIMUM_INIT) break;
+ N1++;
+ }
+ if (minTSpan(fw0)==MINIMUM_INIT && minTSpan(fw1)==MINIMUM_INIT) {
+ fw0 = N1; fw1 = N0;
+ }
+ if (DEBUG) cerr << "fw0=" << fw0 << ", fw1=" << fw1 << ", N0=" << N0 << ", N1=" << N1 << endl;
+ if (maxTSpan(N0)<minTSpan(fw0) || maxTSpan(fw0)<minTSpan(N0)) {
+ if (DEBUG) cerr << "N0=" << minTSpan(N0) << "-" << maxTSpan(N0);
+ if (DEBUG) cerr << "fw=" << minTSpan(fw0) << "-" << maxTSpan(fw0) << endl;
+ int *block = blockTarget(minTSpan(N0),maxTSpan(N0));
+ if (block[0]<=fw0 && fw0<=block[1]) oril=5;
+ delete block;
+ if (oril==0) {
+ block = blockTarget(minTSpan(fw0),maxTSpan(fw0));
+ if (block[0]<=N0 && N0<=block[1]) oril=5;
+ delete block;
+ }
+ if (oril==0) {
+ if (maxTSpan(N0)<minTSpan(fw0)) {// if N0 is monotone
+ oril=1;
+ block = blockTarget(maxTSpan(N0),minTSpan(fw0)-1);
+ if (block[0] <= fw0 && fw0 <= block[1]) oril+=2;
+ delete block;
+ } else { //if (maxTSpan(fw0)<minTSpan(N0)) { // if NO is non-monotone
+ oril=2;
+ block = blockTarget(maxTSpan(fw0)+1,minTSpan(N0));
+ if (block[0] <= fw0 && fw0 <= block[1]) oril+=2;
+ delete block;
+ }
+ }
+ } else {
+ oril=5;
+ }
+ if (DEBUG) cerr << "oril = " << oril << endl;
+ int* block = blockSource(N0,fw0);
+ if (DEBUG) {
+ for (int i=0; i<4; i++) cerr << "block[" << i << "]=" << block[i] << endl;
+ }
+ vector<int> ret;
+ ret.push_back(oril); ret.push_back(block[0]); ret.push_back(block[1]);
+ ret.push_back(block[2]); ret.push_back(block[3]);
+ delete block;
+ return ret;
+}
+
+vector<int> Alignment::OrientationSourceRight4Sampler(int fw) {
+ return OrientationSourceRight4Sampler(fw,fw);
+}
+
+vector<int> Alignment::OrientationSourceRight4Sampler(int fw0, int fw1) {
+ if (DEBUG) cerr << "OrientationSourceLeft4Sampler(" << fw0 << "," << fw1 << ")" << endl;
+ int orir = 0;
+ int N0=fw0-1;
+ while (N0>=0) {
+ if (minTSpan(N0)!=MINIMUM_INIT) break;
+ N0--;
+ }
+ int N1=fw1+1;
+ while (N1<_J) {
+ if (minTSpan(N1)!=MINIMUM_INIT) break;
+ N1++;
+ }
+ if (minTSpan(fw0)==MINIMUM_INIT && minTSpan(fw1)==MINIMUM_INIT) {
+ fw0 = N1; fw1 = N0;
+ }
+ if (DEBUG) cerr << "fw0=" << fw0 << ", fw1=" << fw1 << ", N0=" << N0 << ", N1=" << N1 << endl;
+ if (maxTSpan(N1)<minTSpan(fw1) || maxTSpan(fw1)<minTSpan(N1)) {
+ int* block = blockTarget(minTSpan(N1),maxTSpan(N1));
+ if (block[0]<=fw1 && fw1<=block[2]) orir=5;
+ delete block;
+ if (orir==0) {
+ block = blockTarget(minTSpan(fw1),maxTSpan(fw1));
+ if (block[0]<=N1 && N1 <=block[1]) orir=5;
+ delete block;
+ }
+ if (DEBUG) cerr << "N1=" << minTSpan(N1) << "-" << maxTSpan(N1);
+ if (DEBUG) cerr << "fw1=" << minTSpan(fw1) << "-" << maxTSpan(fw1) << endl;
+ if (orir==0) {
+ if (maxTSpan(fw1)<minTSpan(N1)) { // if N1 is monotone
+ orir = 1;
+ block = blockTarget(maxTSpan(fw1)+1,minTSpan(N1));
+ if (block[0] <= fw1 && fw1 <= block[1]) orir+=2;
+ delete block;
+ } else {// if (maxTSpan(N1)<minTSpan(fw1)) { // if N1 is non-monotone
+ orir = 2;
+ block = blockTarget(maxTSpan(N1),minTSpan(fw1)-1);
+ if (block[0] <= fw1 && fw1 <= block[1]) orir+=2;
+ delete block;
+ }
+ }
+ } else {
+ orir = 5;
+ }
+ if (DEBUG) cerr << "orir = " << orir << endl;
+ int* block = blockSource(fw1,N1);
+ vector<int> ret;
+ ret.push_back(orir); ret.push_back(block[0]); ret.push_back(block[1]);
+ ret.push_back(block[2]); ret.push_back(block[3]);
+ delete block;
+ return ret;
+}
+
+void Alignment::OrientationSource(int fw0, int fw1, int* oril, int* orir, bool Lcompute, bool Rcompute) {
+ // Orientation
+ // A bit tricky since fw can be 1) unaligned 2) aligned to many
+ // 1 -> MA, 2 -> RA, 3 -> MG, 4 -> RG, 5 -> Other
+ if (DEBUG) cerr << "OrientationSource(" << fw0 << "," << fw1 << ")" << endl;
+ if (!Lcompute && !Rcompute) return;
+ curr_al.push_back(fw0);
+ curr_al.push_back(fw1);
+ *oril=0;
+ *orir=0;
+ int lr=0;
+ if (oris_hash.find(curr_al)==oris_hash.end()) {
+ // Find first aligned word N0 to the left of fw
+ int N0=fw0-1;
+ while (N0>=0) {
+ if (minTSpan(N0)!=MINIMUM_INIT) break;
+ N0--;
+ }
+ int N1=fw1+1;
+ while (N1<_J) {
+ if (minTSpan(N1)!=MINIMUM_INIT) break;
+ N1++;
+ }
+ if (minTSpan(fw0)==MINIMUM_INIT && minTSpan(fw1)==MINIMUM_INIT) {
+ fw0 = N1; fw1 = N0;
+ //cerr << "minTSpan(fw)==MINIMUM_INIT, thus fw0=" << fw0 << ", fw1=" << fw1 << endl;
+ }
+ if (DEBUG) cerr << "fw0=" << fw0 << ", fw1=" << fw1 << ", N0=" << N0 << ", N1=" << N1 << endl;
+ if (maxTSpan(N0)<minTSpan(fw0) || maxTSpan(fw0)<minTSpan(N0)) {
+ if (DEBUG) cerr << "N0=" << minTSpan(N0) << "-" << maxTSpan(N0);
+ if (DEBUG) cerr << "fw=" << minTSpan(fw0) << "-" << maxTSpan(fw0) << endl;
+ int *block = blockTarget(minTSpan(N0),maxTSpan(N0));
+ if (block[0]<=fw0 && fw0<=block[1]) *oril=5;
+ delete block;
+ if (*oril==0) {
+ block = blockTarget(minTSpan(fw0),maxTSpan(fw0));
+ if (block[0]<=N0 && N0<=block[1]) *oril=5;
+ delete block;
+ }
+ if (*oril==0) {
+ if (maxTSpan(N0)<minTSpan(fw0)) {// if N0 is monotone
+ *oril=1;
+ block = blockTarget(maxTSpan(N0),minTSpan(fw0)-1);
+ if (block[0] <= fw0 && fw0 <= block[1]) *oril+=2;
+ delete block;
+ } else { //if (maxTSpan(fw0)<minTSpan(N0)) { // if NO is non-monotone
+ *oril=2;
+ block = blockTarget(maxTSpan(fw0)+1,minTSpan(N0));
+ if (block[0] <= fw0 && fw0 <= block[1]) *oril+=2;
+ delete block;
+ }
+ }
+ } else {
+ *oril=5;
+ }
+ if (DEBUG) cerr << "oril =" << *oril << endl;
+ // Right neighbor
+ if (maxTSpan(N1)<minTSpan(fw1) || maxTSpan(fw1)<minTSpan(N1)) {
+ int* block = blockTarget(minTSpan(N1),maxTSpan(N1));
+ if (block[0]<=fw1 && fw1<=block[2]) *orir=5;
+ delete block;
+ if (*orir==0) {
+ block = blockTarget(minTSpan(fw1),maxTSpan(fw1));
+ if (block[0]<=N1 && N1 <=block[1]) *orir=5;
+ delete block;
+ }
+ if (DEBUG) cerr << "N1=" << minTSpan(N1) << "-" << maxTSpan(N1);
+ if (DEBUG) cerr << "fw1=" << minTSpan(fw1) << "-" << maxTSpan(fw1) << endl;
+ if (*orir==0) {
+ if (maxTSpan(fw1)<minTSpan(N1)) { // if N1 is monotone
+ *orir = 1;
+ block = blockTarget(maxTSpan(fw1)+1,minTSpan(N1));
+ if (block[0] <= fw1 && fw1 <= block[1]) *orir+=2;
+ delete block;
+ } else {// if (maxTSpan(N1)<minTSpan(fw1)) { // if N1 is non-monotone
+ *orir = 2;
+ block = blockTarget(maxTSpan(N1),minTSpan(fw1)-1);
+ if (block[0] <= fw1 && fw1 <= block[1]) *orir+=2;
+ delete block;
+ }
+ }
+ } else {
+ *orir = 5;
+ }
+ if (DEBUG) cerr << "orir =" << *orir << endl;
+ lr = link(*oril,*orir);
+ oris_hash.insert(pair<vector<int>,int>(curr_al,lr));
+ } else {
+ lr = oris_hash[curr_al];
+ }
+ if (DEBUG) cerr << "Lcompute=" << Lcompute << ", Rcompute=" << Rcompute << endl;
+ if (Lcompute) *oril = source(lr);
+ if (Rcompute) *orir = target(lr);
+ curr_al.pop_back();
+ curr_al.pop_back();
+}
+
+int Alignment::OrientationSource(int* left, int* right) {
+ if (DEBUG) {
+ cerr << " OrientationSource(";
+ cerr << "left="<<left[0]<<","<<left[1]<<","<<left[2]<<","<<left[3];
+ cerr << " right="<<right[0]<<","<<right[1]<<","<<right[2]<<","<<right[3];
+ cerr << ")" << endl;
+ }
+ //if ((right[1]<=left[0]) return 5;
+ if (!(left[1]<right[0])) return 5;
+ int ori = 1;
+ if (right[3]<left[2]) ori=2;
+ int gapstart = left[3]+1; int gapend = right[2]-1;
+ if (ori==2) { gapstart = right[3]+1; gapend = left[2]-1; }
+ for (int j=gapstart; j<=gapend; j++) {
+ if (sourceOf(j)!=-1) {
+ ori+=2; break;
+ }
+ }
+ return ori;
+}
+
+void Alignment::OrientationTarget(int fw, int *oril, int *orir, bool Lcompute, bool Rcompute) {
+ OrientationTarget(fw,fw,oril,orir,Lcompute,Rcompute);
+}
+
+vector<int> Alignment::OrientationTargetLeft4Sampler(int fw) {
+ return OrientationTargetLeft4Sampler(fw,fw);
+}
+
+vector<int> Alignment::OrientationTargetLeft4Sampler(int fw0, int fw1) {
+ if (DEBUG) cerr << "OrientationTargetLeft4Sampler " << fw0 << "," << fw1 << endl;
+ int oril=0;
+ int N0=fw0-1;
+ while (N0>=0) {
+ if (minSSpan(N0)!=MINIMUM_INIT) break;
+ N0--;
+ }
+ int N1=fw1+1;
+ while (N1<_I) {
+ if (minSSpan(N1)!=MINIMUM_INIT) break;
+ N1++;
+ }
+ if (minSSpan(fw0)==MINIMUM_INIT && minSSpan(fw1)==MINIMUM_INIT) {
+ fw0=N1; fw1=N0;
+ }
+ if (maxSSpan(N0)<minSSpan(fw0) || maxSSpan(fw0)<minSSpan(N0)) {
+ int *block = blockSource(minSSpan(N0),maxSSpan(N0));
+ if (DEBUG) cerr << "block1[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2]<=fw0 && fw0<=block[3]) //source span of fw0 subsumes NO's or the other way around
+ oril=5;
+ delete block;
+ if (oril==0) {
+ block = blockSource(minSSpan(fw0), maxSSpan(fw0));
+ if (DEBUG) cerr << "block2[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2] <= N0 && N0 <= block[3]) oril=5;
+ delete block;
+ }
+ if (oril==0) {
+ if (maxSSpan(N0)<minSSpan(fw0)) {// if N0 is monotone
+ oril=1;
+ block = blockSource(maxSSpan(N0),minSSpan(fw0)-1);
+ if (DEBUG) cerr << "block3[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2] <= fw0 && fw0 <= block[3]) oril+=2;
+ delete block;
+ } else { // (maxSSpan(fw0)<minSSpan(N0)) // if NO is non-monotone
+ oril=2;
+ block = blockSource(maxSSpan(fw0)+1,minSSpan(N0));
+ if (DEBUG) cerr << "block4[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2] <= fw0 && fw0 <= block[3]) oril+=2;
+ delete block;
+ }
+ }
+ } else { //source span of fw0 subsumes NO's or the other way around
+ oril=5;
+ }
+ if (DEBUG) cerr << "oril = " << oril << endl;
+ int* block = blockSource(N0,fw0);
+ vector<int> ret;
+ ret.push_back(oril); ret.push_back(block[0]); ret.push_back(block[1]);
+ ret.push_back(block[2]); ret.push_back(block[3]);
+ delete block;
+ return ret;
+}
+
+vector<int> Alignment::OrientationTargetRight4Sampler(int fw) {
+ return OrientationTargetRight4Sampler(fw,fw);
+}
+
+vector<int> Alignment::OrientationTargetRight4Sampler(int fw0, int fw1) {
+ if (DEBUG) cerr << "OrientationTargetRight4Sampler " << fw0 << "," << fw1 << endl;
+ int orir=0;
+ int N0=fw0-1;
+ while (N0>=0) {
+ if (minSSpan(N0)!=MINIMUM_INIT) break;
+ N0--;
+ }
+ int N1=fw1+1;
+ while (N1<_I) {
+ if (minSSpan(N1)!=MINIMUM_INIT) break;
+ N1++;
+ }
+ if (minSSpan(fw0)==MINIMUM_INIT && minSSpan(fw1)==MINIMUM_INIT) {
+ fw0=N1; fw1=N0;
+ }
+ if (maxSSpan(N1)<minSSpan(fw1) || maxSSpan(fw1)<minSSpan(N1)) {
+ int *block = blockSource(minSSpan(N1),maxSSpan(N1));
+ if (block[2]<=fw1 && fw1<=block[3]) orir=5;
+ delete block;
+ if (orir==0) {
+ block = blockSource(minSSpan(fw1),maxSSpan(fw1));
+ if (block[2] <= N1 && N1 <= block[3]) orir=5;
+ delete block;
+ }
+ if (orir==0) {
+ if (maxSSpan(fw1)<minSSpan(N1)) { // if N1 is monotone
+ orir=1;
+ block = blockSource(maxSSpan(fw1)+1,minSSpan(N1));
+ if (block[2] <= fw1 && fw1 <= block[3]) orir+=2;
+ delete block;
+ } else { //if (maxSSpan(N1)<minSSpan(fw1)) { // if N1 is non-monotone
+ orir=2;
+ block = blockSource(maxSSpan(N1),minSSpan(fw1)-1);
+ if (block[2] <= fw1 && fw1 <= block[3]) orir+=2;
+ delete block;
+ }
+ }
+ } else {
+ orir=5;
+ }
+ if (DEBUG) cerr << "orir = " << orir << endl;
+ int* block = blockSource(fw1,N1);
+ vector<int> ret;
+ ret.push_back(orir); ret.push_back(block[0]); ret.push_back(block[1]);
+ ret.push_back(block[2]); ret.push_back(block[3]);
+ delete block;
+ return ret;
+
+}
+
+void Alignment::OrientationTarget(int fw0, int fw1, int*oril, int*orir, bool Lcompute, bool Rcompute) {
+ if (DEBUG) cerr << "OrientationTarget " << fw0 << "," << fw1 << endl;
+ // Left Neighbor
+ if (!Lcompute && !Rcompute) return;
+ *oril=0;
+ *orir=0;
+ curr_al.push_back(fw0);
+ curr_al.push_back(fw1);
+ int lr = 0;
+ if (orit_hash.find(curr_al)==orit_hash.end()) {
+ // Find first aligned word N0 to the left of fw
+ //int fw0 = fw; int fw1 = fw;
+ int N0=fw0-1;
+ while (N0>=0) {
+ if (minSSpan(N0)!=MINIMUM_INIT) break;
+ N0--;
+ }
+ int N1=fw1+1;
+ while (N1<_I) {
+ if (minSSpan(N1)!=MINIMUM_INIT) break;
+ N1++;
+ }
+ if (minSSpan(fw0)==MINIMUM_INIT && minSSpan(fw1)==MINIMUM_INIT) {
+ fw0=N1; fw1=N0;
+ }
+ if (DEBUG) {
+ cerr << "fw0:" << fw0 << ", fw1:" << fw1 << ", N0:" << N0 << ", N1:" << N1 << endl ;
+ cerr << "minSSpan(N0)=" << minSSpan(N0) << " maxSSpan(N0)=" << maxSSpan(N0);
+ cerr << " minSSpan(fw0)="<< minSSpan(fw0) << " maxSSpan(fw0)=" << maxSSpan(fw0) << endl;
+ cerr << "minSSpan(fw1)=" << minSSpan(fw1) << " maxSSpan(fw1)=" << maxSSpan(fw1);
+ cerr << " minSSpan(N1)="<< minSSpan(N1) << " maxSSpan(N1)=" << maxSSpan(N1) << endl;
+ }
+ if (maxSSpan(N0)<minSSpan(fw0) || maxSSpan(fw0)<minSSpan(N0)) {
+ int *block = blockSource(minSSpan(N0),maxSSpan(N0));
+ if (DEBUG) cerr << "block1[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2]<=fw0 && fw0<=block[3]) //source span of fw0 subsumes NO's or the other way around
+ *oril=5;
+ delete block;
+ if (*oril==0) {
+ block = blockSource(minSSpan(fw0), maxSSpan(fw0));
+ if (DEBUG) cerr << "block2[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2] <= N0 && N0 <= block[3]) *oril=5;
+ delete block;
+ }
+ if (*oril==0) {
+ if (maxSSpan(N0)<minSSpan(fw0)) {// if N0 is monotone
+ *oril=1;
+ block = blockSource(maxSSpan(N0),minSSpan(fw0)-1);
+ if (DEBUG) cerr << "block3[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2] <= fw0 && fw0 <= block[3]) *oril+=2;
+ delete block;
+ } else { // (maxSSpan(fw0)<minSSpan(N0)) // if NO is non-monotone
+ *oril=2;
+ block = blockSource(maxSSpan(fw0)+1,minSSpan(N0));
+ if (DEBUG) cerr << "block4[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (block[2] <= fw0 && fw0 <= block[3]) *oril+=2;
+ delete block;
+ }
+ }
+ } else { //source span of fw0 subsumes NO's or the other way around
+ *oril=5;
+ }
+ if (DEBUG) cerr << "oril = " << *oril << endl;
+ // Right Neighbor
+ if (maxSSpan(N1)<minSSpan(fw1) || maxSSpan(fw1)<minSSpan(N1)) {
+ int *block = blockSource(minSSpan(N1),maxSSpan(N1));
+ if (block[2]<=fw1 && fw1<=block[3]) *orir=5;
+ delete block;
+ if (*orir==0) {
+ block = blockSource(minSSpan(fw1),maxSSpan(fw1));
+ if (block[2] <= N1 && N1 <= block[3]) *orir=5;
+ delete block;
+ }
+ if (*orir==0) {
+ if (maxSSpan(fw1)<minSSpan(N1)) { // if N1 is monotone
+ *orir=1;
+ block = blockSource(maxSSpan(fw1)+1,minSSpan(N1));
+ if (block[2] <= fw1 && fw1 <= block[3]) *orir+=2;
+ delete block;
+ } else { //if (maxSSpan(N1)<minSSpan(fw1)) { // if N1 is non-monotone
+ *orir=2;
+ block = blockSource(maxSSpan(N1),minSSpan(fw1)-1);
+ if (block[2] <= fw1 && fw1 <= block[3]) *orir+=2;
+ delete block;
+ }
+ }
+ } else {
+ *orir=5;
+ }
+ if (DEBUG) cerr << "orir = " << *orir << endl;
+ lr = link(*oril,*orir);
+ orit_hash.insert(pair<vector<int>,int>(curr_al,lr));
+ } else {
+ lr = orit_hash[curr_al];
+ }
+ if (DEBUG) cerr << "Lcompute=" << Lcompute << ", Rcompute=" << Rcompute << endl;
+ if (DEBUG) cerr << "lr=" << lr << ", l=" << source(lr) << ", r=" << target(lr) << endl;
+ if (Lcompute>0) *oril=source(lr);
+ if (Rcompute>0) *orir=target(lr);
+ curr_al.pop_back();
+ curr_al.pop_back();
+}
+
+int* Alignment::blockSource(int idx1, int idx2) {
+// outputs a minimal block [s1,s2,t1,t2] that contains idx1 and idx2, where idx1 <= idx2
+ if (DEBUG) cerr << "blockSource[" << idx1 << "," << idx2 << "]" << endl;
+ int *curr = new int[4];
+ curr[0]=idx1; curr[1]=idx2; curr[2]=MINIMUM_INIT; curr[3]=MAXIMUM_INIT;
+ for (int j=curr[0]; j<=curr[1]; j++) {
+ curr[2] = least(curr[2],_tSpan[j][0]);
+ curr[3] = most(curr[3],_tSpan[j][1]);
+ }
+ int next[4];
+ next[0]=curr[0]; next[1]=curr[1];
+ for (int i=curr[2]; i<=curr[3]; i++) {
+ next[0] = least(next[0],_sSpan[i][0]);
+ next[1] = most(next[1],_sSpan[i][1]);
+ }
+ next[2] = curr[2]; next[3]= curr[3];
+ int idx=1;
+ do {
+ // update the current
+ for (int j=next[0]; j<curr[0]; j++) {
+ curr[2] = least(curr[2],_tSpan[j][0]);
+ curr[3] = most(curr[3],_tSpan[j][1]);
+ }
+ for (int j=curr[1]+1; j<=next[1]; j++) {
+ curr[2] = least(curr[2],_tSpan[j][0]);
+ curr[3] = most(curr[3],_tSpan[j][1]);
+ }
+ curr[0] = next[0]; curr[1] = next[1];
+ if (curr[2]==next[2] && curr[3]==next[3]) break;
+ // prepare for the next
+ for (int i=curr[2]; i<next[2]; i++) {
+ next[0]= least(next[0],_sSpan[i][0]);
+ next[1]= most(next[1],_sSpan[i][1]);
+ }
+ for (int i=next[3]+1; i<=curr[3]; i++) {
+ next[0] = least(next[0],_sSpan[i][0]);
+ next[1] = most(next[1],_sSpan[i][1]);
+ }
+ next[2] = curr[2]; next[3]= curr[3];
+ idx++;
+ } while(1);
+ return curr;
+}
+
+int* Alignment::blockTarget(int idx1, int idx2) {
+// outputs a minimal [s1,s2,t1,t2] that contains idx1 and idx2, where idx1<=idx2
+ int *curr = new int[4];
+ curr[0]=MINIMUM_INIT; curr[1]=MAXIMUM_INIT; curr[2]=idx1; curr[3]=idx2;
+ for (int i=curr[2]; i<=curr[3]; i++) {
+ curr[0] = least(curr[0],_sSpan[i][0]);
+ curr[1] = most(curr[1],_sSpan[i][1]);
+ }
+ int next[4];
+ next[2]=curr[2]; next[3]=curr[3];
+ for (int j=curr[0]; j<=curr[1]; j++) {
+ next[2] = least(next[2],_tSpan[j][0]);
+ next[3] = most(next[3],_tSpan[j][1]);
+ }
+ next[0] = curr[0]; next[1]= curr[1];
+ int idx=1;
+ do {
+ // update the current
+ for (int i=next[2]; i<curr[2]; i++) {
+ curr[0] = least(curr[0],_sSpan[i][0]);
+ curr[1] = most(curr[1],_sSpan[i][1]);
+ }
+ for (int i=curr[3]+1; i<=next[3]; i++) {
+ curr[0] = least(curr[0],_sSpan[i][0]);
+ curr[1] = most(curr[1],_sSpan[i][1]);
+ }
+ curr[2] = next[2]; curr[3] = next[3];
+ if (curr[0]==next[0] && curr[1]==next[1]) break;
+ // prepare for the next
+ for (int j=curr[0]; j<next[0]; j++) {
+ next[2]= least(next[2],_tSpan[j][0]);
+ next[3]= most(next[3],_tSpan[j][1]);
+ }
+ for (int j=next[1]+1; j<=curr[1]; j++) {
+ next[2] = least(next[2],_tSpan[j][0]);
+ next[3] = most(next[3],_tSpan[j][1]);
+ }
+ next[0] = curr[0]; next[1]= curr[1];
+ idx++;
+ } while(1);
+ return curr;
+}
+
+int Alignment::firstSourceAligned(int start) {
+ for (int j=start; j<_J; j++)
+ if (_tSpan[j][0]!=MINIMUM_INIT) return j;
+ return -1;
+}
+
+int Alignment::lastSourceAligned(int end) {
+ for (int j=end; j>=0; j--)
+ if (_tSpan[j][0]!=MINIMUM_INIT) return j;
+ return -1;
+}
+
+int Alignment::firstTargetAligned(int start) {
+ for (int i=start; i<_I; i++)
+ if (_sSpan[i][0]!=MINIMUM_INIT) return i;
+ return -1;
+}
+
+int Alignment::lastTargetAligned(int end) {
+ for (int i=end; i>=0; i--)
+ if (_sSpan[i][0]!=MINIMUM_INIT) return i;
+ return -1;
+}
+
+void Alignment::BorderingSFWsOnly() {
+// removes the record of all function word alignments, except those at the borders
+// the number of alignments kept may be more than two
+// i.e. where the leftmost / the rightmost alignments are unaligned.
+// In such cases, this function continues keeping function word alignments until the
+// first (or last) alignment words.
+ if (SourceFWIdxs[0]>2) {
+ int firstCut = 1;
+ for (int j=2; j<=SourceFWIdxs[0]; j++) {
+ if (SourceFWIdxs[3*j-2]>fas) break;
+ firstCut=j;
+ }
+ int lastCut = SourceFWIdxs[0];
+ for (int j=SourceFWIdxs[0]-1; j>=0; j--) {
+ if (SourceFWIdxs[3*j-2]<las) break;
+ lastCut=j;
+ }
+ if (firstCut>=lastCut) return;
+ int delta = 0;
+ for (int j=lastCut; j<=SourceFWIdxs[0]; j++) {
+ delta++;
+ SourceFWIdxs[3*(firstCut+delta)-2]=SourceFWIdxs[3*j-2];
+ SourceFWIdxs[3*(firstCut+delta)-1]=SourceFWIdxs[3*j-1];
+ SourceFWIdxs[3*(firstCut+delta)] =SourceFWIdxs[3*j];
+ }
+ SourceFWIdxs[0]=firstCut+delta;
+ }
+}
+
+void Alignment::BorderingTFWsOnly() {
+// similar to BorderingSFWsOnly() except this looks at the source side.
+ if (TargetFWIdxs[0]>2) {
+ int firstCut = 1;
+ for (int j=2; j<=TargetFWIdxs[0]; j++) {
+ if (TargetFWIdxs[3*j-2]>fat) break;
+ firstCut=j;
+ }
+ int lastCut = TargetFWIdxs[0];
+ for (int j=TargetFWIdxs[0]-1; j>=0; j--) {
+ if (TargetFWIdxs[3*j-2]<lat) break;
+ lastCut=j;
+ }
+ if (firstCut>=lastCut) return;
+ int delta = 0;
+ for (int j=lastCut; j<=TargetFWIdxs[0]; j++) {
+ delta++;
+ TargetFWIdxs[3*(firstCut+delta)-2]=TargetFWIdxs[3*j-2];
+ TargetFWIdxs[3*(firstCut+delta)-1]=TargetFWIdxs[3*j-1];
+ TargetFWIdxs[3*(firstCut+delta)] =TargetFWIdxs[3*j];
+ }
+ TargetFWIdxs[0]=firstCut+delta;
+ }
+}
+
+void Alignment::FillFWIdxsState(int* state, int fas, int las, int fat, int lat) {
+ if (DEBUG) cerr << "FillFWIdxsState ("<< fas <<","<< las<<"," << fat <<"," << lat << ")" << endl;
+ if (fas==las) las+=1;
+ if (fat==lat) lat+=1;
+ for (int idx=0; idx<12; idx++) state[idx]=-1;
+ if (SourceFWIdxs[0]<=2) {
+ if (SourceFWIdxs[0]>=1) {state[0]=SourceFWIdxs[1]; state[1]=SourceFWIdxs[2]; state[2]=SourceFWIdxs[3];}
+ if (SourceFWIdxs[0]==2) {state[3]=SourceFWIdxs[4]; state[4]=SourceFWIdxs[5]; state[5]=SourceFWIdxs[6];}
+ } else {
+ if (SourceFWIdxs[1]>fas) {
+ state[0]=SourceFWIdxs[1]; state[1]=SourceFWIdxs[2]; state[2]=SourceFWIdxs[3];
+ } else {
+ ostringstream issf; ostringstream isse;
+ for (int idx=1; idx<=SourceFWIdxs[0]; idx++) {
+ if (SourceFWIdxs[3*idx-2]>las) break;
+ if (idx>1) { issf << " "; isse << " ";};
+ issf << TD::Convert(SourceFWIdxs[3*idx-1]);
+ isse << TD::Convert(SourceFWIdxs[3*idx]);
+ state[0]=SourceFWIdxs[3*idx-2];
+ if (state[0]>=fas) break;
+ }
+ if (state[0]>=0) {
+ state[1]=TD::Convert(issf.str())*-1; state[2]=TD::Convert(isse.str()); //multiplying source with -1 as marker
+ }
+ }
+ if (SourceFWIdxs[SourceFWIdxs[0]*3-2]==las) {
+ state[3]=SourceFWIdxs[SourceFWIdxs[0]*3-2];
+ state[4]=SourceFWIdxs[SourceFWIdxs[0]*3-1];
+ state[5]=SourceFWIdxs[SourceFWIdxs[0]*3];
+ } else {
+ int lastCut = SourceFWIdxs[0];
+ for (int j=lastCut-1; j>=state[0]+1; j--) {
+ if (SourceFWIdxs[3*j-2]==state[0]) break;
+ if (SourceFWIdxs[3*j-2]<las) break;
+ lastCut=j;
+ }
+ state[3]=SourceFWIdxs[3*lastCut-2];
+ ostringstream issf; ostringstream isse;
+ for (int idx=lastCut; idx<=SourceFWIdxs[0]; idx++) {
+ if (idx>lastCut) { issf << " "; isse << " ";};
+ issf << TD::Convert(SourceFWIdxs[3*idx-1]);
+ isse << TD::Convert(SourceFWIdxs[3*idx]);
+ }
+ if (state[3]>=0) {
+ //multiplying source with -1 as compound marker
+ state[4]=TD::Convert(issf.str())*-1; state[5]=TD::Convert(isse.str());
+ }
+ }
+ }
+ if (TargetFWIdxs[0]<=2) {
+ if (TargetFWIdxs[0]>=1) {state[6]=TargetFWIdxs[1]; state[7]=TargetFWIdxs[2]; state[8]=TargetFWIdxs[3];}
+ if (TargetFWIdxs[0]==2) {state[9]=TargetFWIdxs[4]; state[10]=TargetFWIdxs[5]; state[11]=TargetFWIdxs[6];}
+ } else {
+ if (TargetFWIdxs[1]>fat) { //shouldn't come here if SetTargetBorderingFW is invoked
+ state[6]=TargetFWIdxs[1]; state[7]=TargetFWIdxs[2]; state[8]=TargetFWIdxs[3];
+ } else {
+ ostringstream issf; ostringstream isse;
+ for (int idx=1; idx<=TargetFWIdxs[0]; idx++) {
+ if (TargetFWIdxs[3*idx-2]>fat) break;
+ if (idx>1) { issf << " "; isse << " ";};
+ issf << TD::Convert(TargetFWIdxs[3*idx-1]);
+ isse << TD::Convert(TargetFWIdxs[3*idx]);
+ state[6]=TargetFWIdxs[3*idx-2];
+ }
+ state[7]=TD::Convert(issf.str()); state[8]=TD::Convert(isse.str())*-1;
+ //multiplying target with -1 as compound marker
+ }
+ if (TargetFWIdxs[TargetFWIdxs[0]*3-2]==lat) {
+ state[9]=TargetFWIdxs[TargetFWIdxs[0]*3-2];
+ state[10]=TargetFWIdxs[TargetFWIdxs[0]*3-1];
+ state[11]=TargetFWIdxs[TargetFWIdxs[0]*3];
+ } else {
+ int lastCut = TargetFWIdxs[0];
+ for (int j=lastCut-1; j>=1; j--) {
+ if (TargetFWIdxs[3*j-2]<=state[9]) break;
+ if (TargetFWIdxs[3*j-2]<lat) break;
+ lastCut=j;
+ }
+ state[9]=TargetFWIdxs[3*lastCut-2];
+ ostringstream issf; ostringstream isse;
+ for (int idx=lastCut; idx<=TargetFWIdxs[0]; idx++) {
+ if (idx>lastCut) issf << " "; isse << " ";;
+ issf << TD::Convert(TargetFWIdxs[3*idx-1]);
+ isse << TD::Convert(TargetFWIdxs[3*idx]);
+ }
+ state[10]=TD::Convert(issf.str()); state[11]=TD::Convert(isse.str())*-1;
+ }
+ }
+}
+
+void Alignment::simplifyBackward(vector<int *>*blocks, int* block, const vector<int>& danglings) {
+// given a *block*, see whether its target span contains any index inside *danglings*.
+// if yes, break it; otherwise, keep it. put the result(s) to *blocks*
+ if (DEBUG) cerr << "simplifyBackward[" << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << "]" << endl;
+ if (DEBUG) for (int i=0; i<danglings.size(); i++) cerr << "danglings[" << i << "] = " << danglings[i] << endl;
+ if (danglings.size()==0) {
+ blocks->push_back(block);
+ if (DEBUG) cerr << "pushing(0) " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ return;
+ }
+ int currIdx = block[2];
+ int i_dangling = 0;
+ while (block[2]>danglings[i_dangling]) {
+ if (i_dangling+1 >= danglings.size()) break;
+ i_dangling++;
+ }
+ while (danglings[i_dangling]==currIdx) {
+ i_dangling++;
+ currIdx++;
+ }
+ /*if (i_dangling>=danglings.size() && currIdx) {
+ blocks->push_back(block);
+ if (DEBUG) cerr << "pushing(1) " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ return;
+ }
+ if (block[3]<danglings[i_dangling]) {
+ blocks->push_back(block);
+ if (DEBUG) cerr << "pushing(2) " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ return;
+ }*/
+ if (DEBUG) cerr << "i_dangling = " << i_dangling << endl;
+ int anchorIdx = danglings[i_dangling];
+ if (i_dangling+1>=danglings.size() || anchorIdx>block[3]+1) anchorIdx=block[3]+1;
+ if (DEBUG) cerr << "anchorIdx = " << anchorIdx << ", currIdx = " << currIdx << endl;
+ do {
+ while(currIdx<anchorIdx) {
+ if (DEBUG) cerr << "currIdx = " << currIdx << ", anchorIdx = " << anchorIdx << endl;
+ bool isMoved = false;
+ for (int idx=anchorIdx-1; idx>=currIdx; idx--) {
+ int *nublock = blockTarget(currIdx,idx);
+ if (nublock[2]==currIdx && nublock[3]==idx) {
+ if (nublock[0]!=MINIMUM_INIT) {
+ blocks->push_back(nublock);
+ if (DEBUG) cerr << "pushing(3) " << nublock[0] << "," << nublock[1] << "," << nublock[2] << "," << nublock[3] << endl;
+ } else {
+ delete nublock;
+ }
+ isMoved = true;
+ currIdx=idx+1; break;
+ } else {
+ delete nublock;
+ }
+ }
+ if (DEBUG) cerr << "isMoved=" << isMoved << ", currIdx=" << currIdx << endl;
+ if (!isMoved) {
+ int source = sourceOf(currIdx);
+ while (source>=0) {
+ if (source >= block[0]) {
+ int* nublock = new int[4];
+ nublock[0]=source; nublock[1]=source; nublock[2]=currIdx; nublock[3]=currIdx;
+ blocks->push_back(nublock);
+ if (DEBUG) cerr << "pushing(4) " << nublock[0] << "," << nublock[1] << "," << nublock[2] << "," << nublock[3] << endl;
+ }
+ source = sourceOf(currIdx,source+1);
+ }
+ currIdx++;
+ }
+ }
+ currIdx=anchorIdx+1;
+ anchorIdx=block[3]+1;
+ if (i_dangling+1<danglings.size()) anchorIdx=danglings[++i_dangling];
+ } while(currIdx<=block[3]);
+}
+
+void Alignment::simplify(int* ret) {
+ // the idea is to create blocks of maximal consistent alignment in between a pair of function words
+ // exceptional cases include: one to non-contiguous many (or vice versa) -> treat this as one alignment each
+ // record all function word alignments first, important because it may be unaligned
+ // return true if it's truly simple (no function word alignment involves); false, otherwise
+ if (DEBUG) cerr << "begin simplify" << endl;
+ reset(0,0); reset(_J-1,_I-1); // remove the phrase boundary alignments, NEED TO CHECK AGAIN !!!
+ if (SourceFWIdxs[0]+TargetFWIdxs[0]==0) { // return singleton
+ if (DEBUG) cerr << "no function words" << endl;
+ for (int idx=0; idx<12; idx++) ret[idx]=-1;
+ ret[12]=1; ret[13]=0; ret[14]=0; // 0-0
+ FillFWIdxsState(ret,0,0,0,0);
+ return;
+ }
+ curr_al.insert(curr_al.begin(),curr_al.size());
+ curr_al.push_back(SourceFWIdxs[0]);
+ for (int i=1; i<=SourceFWIdxs[0]; i++) curr_al.push_back(SourceFWIdxs[3*i-2]);
+ curr_al.push_back(TargetFWIdxs[0]);
+ for (int i=1; i<=TargetFWIdxs[0]; i++) curr_al.push_back(TargetFWIdxs[3*i-2]);
+ vector<int> el;
+ if (simplify_hash.find(curr_al)==simplify_hash.end()) {
+ if (DEBUG) {
+ cerr << "SourceFWIdxs:" << SourceFWIdxs[0] << endl;
+ for (int i=1; i<=SourceFWIdxs[0]; i++)
+ cerr << SourceFWIdxs[3*i-2] << "," << SourceFWIdxs[3*i-1] << "," << SourceFWIdxs[3*i] << endl;
+ cerr << "TargetFWIdxs:" << TargetFWIdxs[0] << endl;
+ for (int i=1; i<=TargetFWIdxs[0]; i++) {
+ cerr << TargetFWIdxs[3*i-2] << "," << TargetFWIdxs[3*i-1] << "," << TargetFWIdxs[3*i] << endl;
+ }
+ }
+
+ vector< int* > blocks; // each element contains s1,s2,t1,t2
+ int currIdx = 1; // start from 1 to avoid considering phrase start
+ std::set<int> FWIdxs;
+ std::vector<int> DanglingTargetFWIdxs;
+ for (int i=1; i<= SourceFWIdxs[0]; i++) FWIdxs.insert(SourceFWIdxs[3*i-2]);
+ for (int i=1; i<= TargetFWIdxs[0]; i++) {
+ int source = sourceOf(TargetFWIdxs[3*i-2]);
+ if (source>=0) {
+ do {
+ FWIdxs.insert(source);
+ source = sourceOf(TargetFWIdxs[3*i-2],source+1);
+ } while(source >=0);
+ } else {
+ int *block = new int[4];
+ block[0]=-1; block[1]=-1; block[2]=TargetFWIdxs[3*i-2]; block[3]=TargetFWIdxs[3*i-2];
+ blocks.push_back(block);
+ if (DEBUG) cerr << "pushing[1] " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ DanglingTargetFWIdxs.push_back(TargetFWIdxs[3*i-2]);
+ }
+ }
+ if (DEBUG)
+ for (std::set<int>::const_iterator iter=FWIdxs.begin(); iter!=FWIdxs.end(); iter++) {
+ cerr << "FWIdxs=" << *iter << endl;
+ }
+ std::set<int>::const_iterator currFWIdx = FWIdxs.begin();
+ if (currFWIdx == FWIdxs.end()) {
+ int* block = new int[4];
+ block[0]=1; block[1]=_J-2; block[2]=1; block[3]=_I-2; // no need to consider phrase boundaries
+ simplifyBackward(&blocks,block,DanglingTargetFWIdxs);
+ } else {
+ int anchorIdx = *currFWIdx; // also used to denote _J+1
+ do {
+ // add alignments whose source from currIdx to currFWIdx-1
+ while (currIdx<anchorIdx) {
+ bool isMoved = false;
+ //cerr << "anchorIdx = " << anchorIdx << ", currIdx = " << currIdx << endl;
+ for (int idx=anchorIdx-1; idx>=currIdx; idx--) {
+ int* block = blockSource(currIdx,idx);
+ if (block[0]==currIdx&&block[1]==idx) {
+ if (block[2]!=MINIMUM_INIT) { // must be aligned
+ simplifyBackward(&blocks,block,DanglingTargetFWIdxs);
+ } else {
+ delete block;
+ }
+ currIdx = idx+1; isMoved = true;
+ break;
+ } else {
+ delete block;
+ }
+ }
+ if (!isMoved) {
+ int target = targetOf(currIdx);
+ while (target>=0) {
+ int* block = new int[4];
+ block[0]=currIdx; block[1]=currIdx; block[2]=target; block[3]=target;
+ blocks.push_back(block);
+ if (DEBUG) cerr << "pushing[2] " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ target = targetOf(currIdx,target+1);
+ }
+ currIdx++;
+ }
+ }
+ // add function word alignments (anchorIdx)
+ if (anchorIdx==getJ()) break;
+ int target = targetOf(anchorIdx);
+ do {
+ int* block = new int[4];
+ block[0]=anchorIdx; block[1]=anchorIdx; block[2]=target; block[3]=target;
+ blocks.push_back(block);
+ if (DEBUG) cerr << "pushing[3] " << block[0] << "," << block[1] << "," << block[2] << "," << block[3] << endl;
+ if (target>=0) target = targetOf(anchorIdx,target+1);
+ } while (target>=0);
+ // advance indexes
+ currIdx = anchorIdx+1;
+ anchorIdx = getJ()-1; // was minus 2
+ if (++currFWIdx!=FWIdxs.end()) anchorIdx = *currFWIdx;
+ } while (currIdx<=getJ()-2);
+ }
+
+
+ vector<int> source_block_mapper(getJ(),-1);
+ vector<int> target_block_mapper(getI(),-1);
+ for (int i = 0; i<blocks.size(); i++) {
+ if (DEBUG) cerr << "blocks[" << i << "]=" << blocks[i][0] << "," << blocks[i][1] << "," << blocks[i][2] << "," << blocks[i][3] << endl;
+ if (blocks[i][0]>=0) source_block_mapper[blocks[i][0]]=1;
+ if (blocks[i][2]>=0) target_block_mapper[blocks[i][2]]=1;
+ }
+ int curr = 1;
+ int prev = -1;
+ for (int idx=0; idx<source_block_mapper.size(); idx++) {
+ if (source_block_mapper[idx]>0) {
+ source_block_mapper[idx]=curr++;
+ prev = curr;
+ } else {
+ source_block_mapper[idx]=prev;
+ }
+ }
+ curr = 1;
+ for (int idx=0; idx<target_block_mapper.size(); idx++) {
+ if (target_block_mapper[idx]>0) {
+ target_block_mapper[idx]=curr++;
+ prev = curr;
+ } else {
+ target_block_mapper[idx]=prev;
+ }
+ }
+
+ //assert(blocks.size()<=50);
+ if (DEBUG) cerr << "resulting alignment:" << endl;
+ for (int i = 0; i<blocks.size(); i++) {
+ if (blocks[i][2]<0 || blocks[i][0]<0) continue;
+ int source = source_block_mapper[blocks[i][0]]-1;
+ int target = target_block_mapper[blocks[i][2]]-1;
+ el.push_back(link(source,target));
+ if (DEBUG) cerr << source << "-" << target << " ";
+ }
+ el.insert(el.begin(),el.size());
+ if (DEBUG) cerr << endl;
+ el.push_back(SourceFWIdxs[0]);
+ for (int idx=1; idx<=SourceFWIdxs[0]; idx++) {
+ if (DEBUG) cerr << "SourceFWIdxs[" << (3*idx-2) << "] from " << SourceFWIdxs[3*idx-2] << endl;
+ el.push_back(source_block_mapper[SourceFWIdxs[3*idx-2]]-1);
+ }
+ el.push_back(TargetFWIdxs[0]);
+ for (int idx=1; idx<=TargetFWIdxs[0]; idx++) {
+ if (DEBUG) cerr << "TargetFWIdxs[" << (3*idx-2) << "] from " << TargetFWIdxs[3*idx-2] << endl;
+ el.push_back(target_block_mapper[TargetFWIdxs[3*idx-2]]-1);
+ }
+ el.push_back(source_block_mapper[fas]-1);
+ el.push_back(source_block_mapper[las]-1);
+ el.push_back(target_block_mapper[fat]-1);
+ el.push_back(target_block_mapper[lat]-1);
+ if (DEBUG) {
+ cerr << "insert key:el = ";
+ for (int ii=0; ii<el.size(); ii++)
+ cerr << ii << "." << el[ii] << " ";
+ cerr << " || " << endl;
+ }
+ if (DEBUG) cerr << "trying to insertL " << endl;
+ if (DEBUG) {
+ cerr << "size=" << curr_al.size() << " ";
+ for (int ii=0; ii<curr_al.size(); ii++) cerr << "curr_al[" << ii << "]=" << curr_al[ii] << " ";
+ cerr << endl;
+ }
+ simplify_hash.insert(pair<vector<int>, vector<int> > (curr_al,el));
+ if (DEBUG) cerr << "inserted" << endl;
+ } else {
+ el = simplify_hash[curr_al];
+ }
+ if (DEBUG) {
+ cerr << "pull key:el = ";
+ for (int ii=0; ii<el.size(); ii++)
+ cerr << ii << "." << el[ii] << " ";
+ cerr << endl;
+ }
+ ret[12] = el[0];
+ for (int i=1; i<=el[0]; i++) ret[12+i] = el[i];
+ int istart = el[0]+1;
+ assert(el[istart]==SourceFWIdxs[0]);
+ for (int i=1; i<=el[istart]; i++) SourceFWIdxs[3*i-2]=el[istart+i];
+ istart += el[istart]+1;
+ assert(el[istart]==TargetFWIdxs[0]);
+ for (int i=1; i<=el[istart]; i++) TargetFWIdxs[3*i-2]=el[istart+i];
+ istart += el[istart]+1;
+ FillFWIdxsState(ret,el[istart],el[istart+1],el[istart+2],el[istart+3]);
+}
+
+void Alignment::simplify_nofw(int* ret) {
+ for (int i=0; i<12; i++) ret[i]=-1;
+ ret[12]=1; ret[13]=0;
+}
+
+void Alignment::sort(int* num) {
+ if (num[0]>1) quickSort(num,1,num[0]);
+}
+
+void Alignment::quickSort(int arr[], int left, int right) {
+ int i = left, j = right;
+ int tmp1,tmp2,tmp3;
+ int mid = (left + right) / 2;
+ int pivot = arr[3*mid-2];
+
+ /* partition */
+ while (i <= j) {
+ while (arr[3*i-2] < pivot) i++;
+ while (arr[3*j-2] > pivot) j--;
+ if (i <= j) {
+ tmp1 = arr[3*i-2]; tmp2 = arr[3*i-1]; tmp3 = arr[3*i];
+ arr[3*i-2] = arr[3*j-2]; arr[3*i-1] = arr[3*j-1]; arr[3*i] = arr[3*j];
+ arr[3*j-2] = tmp1; arr[3*j-1] = tmp2; arr[3*j] = tmp3;
+ i++;
+ j--;
+ }
+ };
+
+ /* recursion */
+ if (left < j) quickSort(arr, left, j);
+ if (i < right) quickSort(arr, i, right);
+}
+
+double Alignment::ScoreOrientation(const CountTable& table, int offset, int ori, WordID cond1, WordID cond2) {
+ string source = TD::Convert(cond1);
+ string sourceidx;
+ if (table.mode == 1) {
+ sourceidx = source;
+ int slashidx = sourceidx.find_last_of("/");
+ source = sourceidx.substr(0,slashidx);
+ string idx = sourceidx.substr(slashidx+1);
+ if (DEBUG) cerr << " sourceidx = " << sourceidx << ", idx = " << idx << endl;
+ if (idx == "X") {
+ if (DEBUG) cerr << " idx == X, returning 0" << endl;
+ return 0;
+ }
+ }
+ string target = TD::Convert(cond2);
+ if (DEBUG) cerr << "sourceidx='" << sourceidx << "', source='" << source << "', target='" << target << "'" << endl;
+ double count = table.ultimate[offset+ori-1];
+ double total = table.ultimate[offset+5];
+ double alpha = 0.1;
+ double prob = count/total;
+ if (DEBUG) cerr << "level0 " << count << "/" << total << "=" << prob << endl;
+
+ WordID key_id = (table.mode!=1) ? cond1 : TD::Convert(source);
+ map<WordID,int*>::const_iterator it = table.model.find(key_id);
+ bool stop = (it==table.model.end());
+ if (!stop) {
+ stop=true;
+ if (it->second[offset+5]>=0) {
+ count = it->second[offset+ori-1] + alpha * prob;
+ total = it->second[offset+5] + alpha;
+ prob = count/total;
+ stop = false;
+ if (DEBUG) cerr << "level1 " << count << "/" << total << "=" << prob << endl;
+ }
+ }
+ if (stop) return prob;
+
+ string key = source + " " + target;
+ it = table.model.find(TD::Convert(key));
+ stop = (it==table.model.end());
+ if (!stop) {
+ stop = true;
+ if (it->second[offset+5]>=0) {
+ count = it->second[offset+ori-1] + alpha * prob;
+ total = it->second[offset+5] + alpha;
+ prob = count/total;
+ stop = false;
+ if (DEBUG) cerr << "level2 " << count << "/" << total << "=" << prob << endl;
+ }
+ }
+
+ if (stop || table.mode!=1) return prob;
+
+ key = sourceidx + " " + target;
+ it = table.model.find(TD::Convert(key));
+ if (it!=table.model.end()) {
+ if (it->second[offset+5]>=0) {
+ count = it->second[offset+ori-1] + alpha * prob;
+ total = it->second[offset+5] + alpha;
+ prob = count/total;
+ if (DEBUG) cerr << "level3 " << count << "/" << total << "=" << prob << endl;
+ }
+ }
+
+ return prob;
+}
+
+void Alignment::ScoreOrientation(const CountTable& table, int offset, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus,
+ double alpha1, double beta1) {
+ if (DEBUG) cerr << "ScoreOrientation:" << TD::Convert(cond1) << "," << TD::Convert(cond2) << ", alpha1 = " << alpha1 << ", beta1 = " << beta1 << endl;
+ double ret = ScoreOrientation(table,offset,ori,cond1,cond2);
+ if (isBonus) {
+ if (table.mode == 0) *bonus += log(ret); else *bonus += ret;
+ } else {
+ if (table.mode == 0) *cost += log(ret); else *cost += ret;
+ }
+}
+
+double Alignment::ScoreOrientationLeft(const CountTable& table, int ori, WordID cond1, WordID cond2) {
+ double ret = ScoreOrientation(table,0,ori,cond1,cond2);
+ if (table.mode == 0) return log(ret);
+ return ret;
+}
+
+double Alignment::ScoreOrientationLeftBackward(const CountTable& table, int ori, WordID cond1, WordID cond2) {
+ double ret = ScoreOrientation(table,12,ori,cond1,cond2);
+ if (table.mode == 0) return log(ret);
+ return ret;
+}
+
+double Alignment::ScoreOrientationRight(const CountTable& table, int ori, WordID cond1, WordID cond2) {
+ double ret = ScoreOrientation(table,6,ori,cond1,cond2);
+ if (table.mode == 0) return log(ret);
+ return ret;
+}
+
+double Alignment::ScoreOrientationRightBackward(const CountTable& table, int ori, WordID cond1, WordID cond2) {
+ double ret = ScoreOrientation(table,18,ori,cond1,cond2);
+ if (table.mode == 0) return log(ret);
+ return ret;
+}
+
+void Alignment::ScoreOrientationLeft(const CountTable& table, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, double alpha1, double beta1) {
+ if (DEBUG) cerr << "ScoreOrientationLeft(" << isBonus << ")" << endl;
+ ScoreOrientation(table,0,ori,cond1,cond2,isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha1,beta1);
+}
+
+void Alignment::ScoreOrientationLeftBackward(const CountTable& table, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, double alpha1, double beta1) {
+ if (DEBUG) cerr << "ScoreOrientationLeftBackward" << endl;
+ ScoreOrientation(table,12,ori,cond1,cond2,isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha1,beta1);
+}
+
+void Alignment::ScoreOrientationRight(const CountTable& table, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, double alpha1, double beta1) {
+ if (DEBUG) cerr << "ScoreOrientationRight(" << isBonus << ")" << endl;
+ ScoreOrientation(table,6,ori,cond1,cond2,isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha1,beta1);
+}
+
+void Alignment::ScoreOrientationRightBackward(const CountTable& table, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, double alpha1, double beta1) {
+ if (DEBUG) cerr << "ScoreOrientationRightBackward" << endl;
+ ScoreOrientation(table,18,ori,cond1,cond2,isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha1,beta1);
+}
+
+void Alignment::computeOrientationSourceBackwardPos(const CountTable& table, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2) {
+ if (DEBUG) cerr << "computeOrientationSourceBackward" << endl;
+ int oril, orir;
+ for (int idx=1; idx<=SourceFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << "considering SourceFWRuleIdxs[" << idx << "]: " << SourceFWRuleIdxs[3*idx-2] << endl;
+ if (!(SourceFWRuleAbsIdxs[idx]<=maxdepth1 || maxfwidx-SourceFWRuleAbsIdxs[idx]+1<=maxdepth2)) continue;
+ int* fwblock = blockSource(SourceFWRuleIdxs[3*idx-2],SourceFWRuleIdxs[3*idx-2]);
+ bool aligned = (fwblock[2]!=MINIMUM_INIT);
+ if (aligned) {
+ OrientationTarget(fwblock[2],fwblock[3],&oril,&orir);
+ } else {
+ OrientationSource(SourceFWRuleIdxs[3*idx-2],&oril,&orir);
+ }
+ if (DEBUG) cerr << "oril = " << oril << ", orir = " << orir << endl;
+ bool isBonus = false; // fas -> first aligned source word, las -> last aligned source word
+ if ((aligned && fwblock[2]<=fat)||
+ (!aligned && SourceFWRuleIdxs[3*idx-2]<=fas)) isBonus=true;
+ if (SourceFWRuleAbsIdxs[idx]<=maxdepth1) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWRuleIdxs[3*idx-1]) << "/" << SourceFWRuleAbsIdxs[idx];
+ ScoreOrientationLeftBackward(table,oril,TD::Convert(nusource.str()),SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxfwidx-SourceFWRuleAbsIdxs[idx]+1<=maxdepth2) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWRuleIdxs[3*idx-1]) << "/" << ((maxfwidx-SourceFWRuleAbsIdxs[idx]+1)*-1);
+ ScoreOrientationLeftBackward(table,oril,TD::Convert(nusource.str()),SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ isBonus = false;
+ if ((aligned && lat<=fwblock[3])||
+ (!aligned && las<=SourceFWRuleIdxs[3*idx-2])) isBonus=true;
+ if (SourceFWRuleAbsIdxs[idx]<=maxdepth1) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWRuleIdxs[3*idx-1]) << "/" << SourceFWRuleAbsIdxs[idx];
+ ScoreOrientationRightBackward(table,orir,SourceFWRuleIdxs[3*idx-1],SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxfwidx-SourceFWRuleAbsIdxs[idx]+1<=maxdepth2) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWRuleIdxs[3*idx-1]) << "/" << ((maxfwidx-SourceFWRuleAbsIdxs[idx]+1)*-1);
+ ScoreOrientationRightBackward(table,orir,SourceFWRuleIdxs[3*idx-1],SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ delete fwblock;
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ // antfas -> first aligned source word antecedent-wise
+ // antlas -> last aligned source word antecedent-wise
+ int antfat = firstTargetAligned(TargetAntsIdxs[i_ant][1]);
+ int antlat = lastTargetAligned(TargetAntsIdxs[i_ant][TargetAntsIdxs[i_ant][0]]);
+ int antfas = firstSourceAligned(SourceAntsIdxs[i_ant][1]);
+ int antlas = lastSourceAligned(SourceAntsIdxs[i_ant][SourceAntsIdxs[i_ant][0]]);
+ assert(antfat <= antlat);
+ assert(antfas <= antlas);
+ for (int idx=1; idx<=SourceFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG)
+ cerr << "considering SourceFWAntsIdxs[" << i_ant << "][" << idx << "]: " << SourceFWAntsIdxs[i_ant][3*idx-2] << endl;
+ if (!(SourceFWAntsAbsIdxs[i_ant][idx]<=maxdepth1 || maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1<=maxdepth2)) continue;
+ int* fwblock = blockSource(SourceFWAntsIdxs[i_ant][3*idx-2],SourceFWAntsIdxs[i_ant][3*idx-2]);
+ //bool aligned = (minTSpan(SourceFWAntsIdxs[i_ant][3*idx-2])!=MINIMUM_INIT);
+ bool aligned = (fwblock[2]!=MINIMUM_INIT);
+ bool Lcompute = true; bool Rcompute = true;
+ if (DEBUG) {
+ cerr << " aligned = " << aligned << endl;
+ cerr << " fwblock = " << fwblock[0] << "," << fwblock[1] << "," << fwblock[2] << "," << fwblock[3] << endl;
+ cerr << " antfas=" << antfas << ", antlas=" << antlas << ", antfat=" << antfat << ", antlat=" << antlat << endl;
+ }
+ if (aligned) {
+ if (DEBUG) cerr << "laligned" << endl;
+ if (antfat<fwblock[2]) {
+ if (DEBUG) cerr << antfat << "<" << fwblock[2] << endl;
+ Lcompute=false;
+ }
+ } else {
+ if (DEBUG) cerr << "!laligned" << endl;
+ if (antfas<fwblock[0] && fwblock[1] < antlas) Lcompute=false;
+ }
+ if (aligned) {
+ if (DEBUG) cerr << "raligned" << endl;
+ if (fwblock[3]<antlat) {
+ if (DEBUG) cerr << fwblock[3] << "<" << antlat << endl;
+ Rcompute=false;
+ }
+ } else {
+ if (DEBUG) cerr << "!raligned" << endl;
+ if (fwblock[1]<antlas && fwblock[1] < antlas) Rcompute=false;
+ }
+ if (!Lcompute && !Rcompute) continue;
+ if (!aligned) {
+ OrientationSource(SourceFWAntsIdxs[i_ant][3*idx-2],&oril,&orir,Lcompute,Rcompute);
+ } else {
+ OrientationTarget(fwblock[2],fwblock[3],&oril,&orir,Lcompute,Rcompute);
+ }
+ if (DEBUG) cerr << "oril = " << oril << ", orir = " << orir << endl;
+ bool isBonus = false;
+ if (Lcompute) {
+ if ((aligned && fwblock[3]<=fat) ||
+ (!aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<=fas)) isBonus = true;
+ if (SourceFWAntsAbsIdxs[i_ant][idx]<=maxdepth1) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWAntsIdxs[i_ant][3*idx-1]) << "/" << SourceFWAntsAbsIdxs[i_ant][idx];
+ ScoreOrientationLeftBackward(table,oril,TD::Convert(nusource.str()),SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1<=maxdepth2) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWAntsIdxs[i_ant][3*idx-1]) << "/" << (-1*(maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1));
+ ScoreOrientationLeftBackward(table,oril,TD::Convert(nusource.str()),SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ }
+ isBonus = false;
+ if (Rcompute) {
+ if ((aligned && lat<=fwblock[2]) ||
+ (!aligned && las<=SourceFWAntsIdxs[i_ant][3*idx-2]))isBonus = true;
+ if (SourceFWAntsAbsIdxs[i_ant][idx]<=maxdepth1) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWAntsIdxs[i_ant][3*idx-1]) << "/" << SourceFWAntsAbsIdxs[i_ant][idx];
+ ScoreOrientationRightBackward(table,orir,TD::Convert(nusource.str()),SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1<=maxdepth2) {
+ ostringstream nusource;
+ nusource << TD::Convert(SourceFWAntsIdxs[i_ant][3*idx-1]) << "/" << (-1*(maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1));
+ ScoreOrientationRightBackward(table,orir,TD::Convert(nusource.str()),SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ }
+ delete fwblock;
+ }
+ }
+}
+
+
+void Alignment::computeOrientationSourceBackward(const CountTable& table, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus) {
+ if (DEBUG) cerr << "computeOrientationSourceBackward" << endl;
+ int oril, orir;
+ for (int idx=1; idx<=SourceFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << "considering SourceFWRuleIdxs[" << idx << "]: " << SourceFWRuleIdxs[3*idx-2] << endl;
+ int* fwblock = blockSource(SourceFWRuleIdxs[3*idx-2],SourceFWRuleIdxs[3*idx-2]);
+ bool aligned = (fwblock[2]!=MINIMUM_INIT);
+ if (aligned) {
+ OrientationTarget(fwblock[2],fwblock[3],&oril,&orir);
+ } else {
+ OrientationSource(SourceFWRuleIdxs[3*idx-2],&oril,&orir);
+ }
+ if (DEBUG) cerr << "oril = " << oril << ", orir = " << orir << endl;
+ bool isBonus = false; // fas -> first aligned source word, las -> last aligned source word
+ if ((aligned && fwblock[2]<=fat)||
+ (!aligned && SourceFWRuleIdxs[3*idx-2]<=fas)) isBonus=true;
+ ScoreOrientationLeftBackward(table,oril,SourceFWRuleIdxs[3*idx-1],SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ isBonus = false;
+ if ((aligned && lat<=fwblock[3])||
+ (!aligned && las<=SourceFWRuleIdxs[3*idx-2])) isBonus=true;
+ ScoreOrientationRightBackward(table,orir,SourceFWRuleIdxs[3*idx-1],SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ delete fwblock;
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ // antfas -> first aligned source word antecedent-wise
+ // antlas -> last aligned source word antecedent-wise
+ int antfat = firstTargetAligned(TargetAntsIdxs[i_ant][1]);
+ int antlat = lastTargetAligned(TargetAntsIdxs[i_ant][TargetAntsIdxs[i_ant][0]]);
+ int antfas = firstSourceAligned(SourceAntsIdxs[i_ant][1]);
+ int antlas = lastSourceAligned(SourceAntsIdxs[i_ant][SourceAntsIdxs[i_ant][0]]);
+ assert(antfat <= antlat);
+ assert(antfas <= antlas);
+ for (int idx=1; idx<=SourceFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG)
+ cerr << "considering SourceFWAntsIdxs[" << i_ant << "][" << idx << "]: " << SourceFWAntsIdxs[i_ant][3*idx-2] << endl;
+ int* fwblock = blockSource(SourceFWAntsIdxs[i_ant][3*idx-2],SourceFWAntsIdxs[i_ant][3*idx-2]);
+ //bool aligned = (minTSpan(SourceFWAntsIdxs[i_ant][3*idx-2])!=MINIMUM_INIT);
+ bool aligned = (fwblock[2]!=MINIMUM_INIT);
+ bool Lcompute = true; bool Rcompute = true;
+ if (DEBUG) {
+ cerr << " aligned = " << aligned << endl;
+ cerr << " fwblock = " << fwblock[0] << "," << fwblock[1] << "," << fwblock[2] << "," << fwblock[3] << endl;
+ cerr << " antfas=" << antfas << ", antlas=" << antlas << ", antfat=" << antfat << ", antlat=" << antlat << endl;
+ }
+ if (aligned) {
+ if (DEBUG) cerr << "laligned" << endl;
+ if (antfat<fwblock[2]) {
+ if (DEBUG) cerr << antfat << "<" << fwblock[2] << endl;
+ Lcompute=false;
+ }
+ } else {
+ if (DEBUG) cerr << "!laligned" << endl;
+ if (antfas<fwblock[0] && fwblock[1] < antlas) Lcompute=false;
+ }
+ if (aligned) {
+ if (DEBUG) cerr << "raligned" << endl;
+ if (fwblock[3]<antlat) {
+ if (DEBUG) cerr << fwblock[3] << "<" << antlat << endl;
+ Rcompute=false;
+ }
+ } else {
+ if (DEBUG) cerr << "!raligned" << endl;
+ if (fwblock[1]<antlas && fwblock[1] < antlas) Rcompute=false;
+ }
+ if (!Lcompute && !Rcompute) continue;
+ if (!aligned) {
+ OrientationSource(SourceFWAntsIdxs[i_ant][3*idx-2],&oril,&orir,Lcompute,Rcompute);
+ } else {
+ OrientationTarget(fwblock[2],fwblock[3],&oril,&orir,Lcompute,Rcompute);
+ }
+ if (DEBUG) cerr << "oril = " << oril << ", orir = " << orir << endl;
+ bool isBonus = false;
+ if (Lcompute) {
+ if ((aligned && fwblock[3]<=fat) ||
+ (!aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<=fas)) isBonus = true;
+ ScoreOrientationLeftBackward(table,oril,SourceFWAntsIdxs[i_ant][3*idx-1],SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ isBonus = false;
+ if (Rcompute) {
+ if ((aligned && lat<=fwblock[2]) ||
+ (!aligned && las<=SourceFWAntsIdxs[i_ant][3*idx-2]))isBonus = true;
+ ScoreOrientationRightBackward(table,orir,SourceFWAntsIdxs[i_ant][3*idx-1],SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ delete fwblock;
+ }
+ }
+}
+
+void Alignment::computeOrientationSourcePos(const CountTable& table, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2) {
+ // This implementation is actually really bad, not reusing codes at all
+ if (DEBUG) cerr << "computeOrientationSourcePos(maxfwidx=" << maxfwidx << ",maxdepth=" << maxdepth1 << "," << maxdepth2 << ")" << endl;
+ if (maxdepth1+maxdepth2==0) return;
+ int oril, orir;
+ ostringstream oss;
+ WordID sourceID;
+ for (int idx=1; idx<=SourceFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << "considering SourceFWRuleIdxs[" << idx << "]: " << SourceFWRuleIdxs[3*idx-2] << endl;
+ //if (!((SourceFWRuleAbsIdxs[idx]<=maxdepth1) || (maxfwidx-SourceFWRuleAbsIdxs[idx]+1<=maxdepth2))) continue;
+ string source = TD::Convert(SourceFWRuleIdxs[3*idx-1]);
+ OrientationSource(SourceFWRuleIdxs[3*idx-2],&oril,&orir);
+ bool isBonus = false; // fas -> first aligned source word, las -> last aligned source word
+ if (SourceFWRuleIdxs[3*idx-2]<=fas) isBonus=true;
+ if (!isBonus) // this is unnecessary because fas <= las assertion
+ if (minTSpan(SourceFWRuleIdxs[3*idx-2])==MINIMUM_INIT && las<=SourceFWRuleIdxs[3*idx-2]) isBonus=true;
+ if (maxdepth1>0) {
+ oss << source << "/";
+ if (SourceFWRuleAbsIdxs[idx]<=maxdepth1)
+ oss << SourceFWRuleAbsIdxs[idx];
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationLeft(table,oril,sourceID,SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxdepth2>0) {
+ oss << source << "/";
+ if (maxfwidx-SourceFWRuleAbsIdxs[idx]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWRuleAbsIdxs[idx]+1)*-1);
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationLeft(table,oril,sourceID,SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ isBonus = false;
+ if (las<=SourceFWRuleIdxs[3*idx-2]) isBonus=true;
+ if (!isBonus) // this is unnecessary becuase fas <= las assertion
+ if (minTSpan(SourceFWRuleIdxs[3*idx-2])==MINIMUM_INIT && SourceFWRuleIdxs[3*idx-2]<=fas) isBonus=true;
+ if (maxdepth1>0) {
+ oss << source << "/";
+ if (SourceFWRuleAbsIdxs[idx]<=maxdepth1)
+ oss << SourceFWRuleAbsIdxs[idx];
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationRight(table,orir,sourceID,SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxdepth2>0) {
+ oss << source << "/";
+ if (maxfwidx-SourceFWRuleAbsIdxs[idx]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWRuleAbsIdxs[idx]+1)*-1);
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationRight(table,orir,sourceID,SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ for (int idx=1; idx<=SourceFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG)
+ cerr << "considering SourceFWAntsIdxs[" << i_ant << "][" << idx << "]: " << SourceFWAntsIdxs[i_ant][3*idx-2] << endl;
+ //if (!((SourceFWAntsAbsIdxs[i_ant][idx]<=maxdepth1)||(maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1<=maxdepth2))) continue;
+ // antfas -> first aligned source word antecedent-wise
+ // antlas -> last aligned source word antecedent-wise
+ int antfas = firstSourceAligned(SourceAntsIdxs[i_ant][1]);
+ int antlas = lastSourceAligned(SourceAntsIdxs[i_ant][SourceAntsIdxs[i_ant][0]]);
+ if (DEBUG) cerr << " SourceFWAntsAbsIdxs[i_ant][3*idx-1]=" << SourceFWAntsAbsIdxs[i_ant][3*idx-1] << endl;
+ string source = TD::Convert(SourceFWAntsIdxs[i_ant][3*idx-1]);
+ assert(antfas <= antlas);
+ bool aligned = (minTSpan(SourceFWAntsIdxs[i_ant][3*idx-2])!=MINIMUM_INIT);
+ bool Lcompute = true;bool Rcompute = true;
+ if ((aligned && antfas<SourceFWAntsIdxs[i_ant][3*idx-2]) ||
+ (!aligned && antfas < SourceFWAntsIdxs[i_ant][3*idx-2] && SourceFWAntsIdxs[i_ant][3*idx-2] < antlas))
+ Lcompute=false;
+ if ((aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<antlas) ||
+ (!aligned && antfas < SourceFWAntsIdxs[i_ant][3*idx-2] && SourceFWAntsIdxs[i_ant][3*idx-2] < antlas))
+ Rcompute=false;
+ if (!Lcompute && !Rcompute) continue;
+ OrientationSource(SourceFWAntsIdxs[i_ant][3*idx-2],&oril,&orir,Lcompute, Rcompute);
+ bool isBonus = false;
+ if (Lcompute) {
+ if (SourceFWAntsIdxs[i_ant][3*idx-2]<=fas) isBonus = true;
+ //if (!isBonus) // this is unnecessary
+ // if (!aligned && las<=SourceFWAntsIdxs[i_ant][3*idx-2]) isBonus=true;
+ if (maxdepth1>0) {
+ oss << source << "/";
+ if (SourceFWAntsAbsIdxs[i_ant][idx]<=maxdepth1)
+ oss << SourceFWAntsAbsIdxs[i_ant][idx];
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationLeft(table,oril,sourceID,SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxdepth2>0) {
+ oss << source << "/";
+ if (maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1)*-1);
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationLeft(table,oril,sourceID,SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ }
+ isBonus = false;
+ if (Rcompute) {
+ if (las<=SourceFWAntsIdxs[i_ant][3*idx-2]) isBonus = true;
+ //if (!isBonus) // this is unnecessary
+ // if (!aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<=fas) isBonus=true;
+ if (maxdepth1>0) {
+ oss << source << "/";
+ if (SourceFWAntsAbsIdxs[i_ant][idx]<=maxdepth1)
+ oss << SourceFWAntsAbsIdxs[i_ant][idx];
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationRight(table,orir,sourceID,SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ if (maxdepth2>0) {
+ oss << source << "/";
+ if (maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWAntsAbsIdxs[i_ant][idx]+1)*-1);
+ else
+ oss << "X";
+ sourceID = TD::Convert(oss.str());
+ oss.str("");
+ ScoreOrientationRight(table,orir,sourceID,SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ }
+ }
+ }
+}
+
+void Alignment::computeOrientationSource(const CountTable& table, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus) {
+// a bit complex due to imperfect state (TO DO!!!)
+// 1. there are cases where function word alignments come from antecedents, which orientation
+// (either its left or its right) has been computed earlier.
+// 2. some orientation will go as bonus
+ if (DEBUG) cerr << "computeOrientationSource" << endl;
+ int oril, orir;
+ for (int idx=1; idx<=SourceFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << "considering SourceFWRuleIdxs[" << idx << "]: " << SourceFWRuleIdxs[3*idx-2] << endl;
+ OrientationSource(SourceFWRuleIdxs[3*idx-2],&oril,&orir);
+ bool isBonus = false; // fas -> first aligned source word, las -> last aligned source word
+ if (SourceFWRuleIdxs[3*idx-2]<=fas) isBonus=true;
+ if (!isBonus) // this is unnecessary because fas <= las assertion
+ if (minTSpan(SourceFWRuleIdxs[3*idx-2])==MINIMUM_INIT && las<=SourceFWRuleIdxs[3*idx-2]) isBonus=true;
+ ScoreOrientationLeft(table,oril,SourceFWRuleIdxs[3*idx-1],SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ isBonus = false;
+ if (las<=SourceFWRuleIdxs[3*idx-2]) isBonus=true;
+ if (!isBonus) // this is unnecessary becuase fas <= las assertion
+ if (minTSpan(SourceFWRuleIdxs[3*idx-2])==MINIMUM_INIT && SourceFWRuleIdxs[3*idx-2]<=fas) isBonus=true;
+ ScoreOrientationRight(table,orir,SourceFWRuleIdxs[3*idx-1],SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ for (int idx=1; idx<=SourceFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG)
+ cerr << "considering SourceFWAntsIdxs[" << i_ant << "][" << idx << "]: " << SourceFWAntsIdxs[i_ant][3*idx-2] << endl;
+ // antfas -> first aligned source word antecedent-wise
+ // antlas -> last aligned source word antecedent-wise
+ int antfas = firstSourceAligned(SourceAntsIdxs[i_ant][1]);
+ int antlas = lastSourceAligned(SourceAntsIdxs[i_ant][SourceAntsIdxs[i_ant][0]]);
+ assert(antfas <= antlas);
+ bool aligned = (minTSpan(SourceFWAntsIdxs[i_ant][3*idx-2])!=MINIMUM_INIT);
+ bool Lcompute = true;bool Rcompute = true;
+ if ((aligned && antfas<SourceFWAntsIdxs[i_ant][3*idx-2]) ||
+ (!aligned && antfas < SourceFWAntsIdxs[i_ant][3*idx-2] && SourceFWAntsIdxs[i_ant][3*idx-2] < antlas))
+ Lcompute=false;
+ if ((aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<antlas) ||
+ (!aligned && antfas < SourceFWAntsIdxs[i_ant][3*idx-2] && SourceFWAntsIdxs[i_ant][3*idx-2] < antlas))
+ Rcompute=false;
+ if (!Lcompute && !Rcompute) continue;
+ OrientationSource(SourceFWAntsIdxs[i_ant][3*idx-2],&oril,&orir,Lcompute, Rcompute);
+ bool isBonus = false;
+ if (Lcompute) {
+ if (SourceFWAntsIdxs[i_ant][3*idx-2]<=fas) isBonus = true;
+ //if (!isBonus) // this is unnecessary
+ // if (!aligned && las<=SourceFWAntsIdxs[i_ant][3*idx-2]) isBonus=true;
+ ScoreOrientationLeft(table,oril,SourceFWAntsIdxs[i_ant][3*idx-1],SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ isBonus = false;
+ if (Rcompute) {
+ if (las<=SourceFWAntsIdxs[i_ant][3*idx-2]) isBonus = true;
+ //if (!isBonus) // this is unnecessary
+ // if (!aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<=fas) isBonus=true;
+ ScoreOrientationRight(table,orir,SourceFWAntsIdxs[i_ant][3*idx-1],SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ }
+ }
+}
+
+void Alignment::computeOrientationSourceGen(const CountTable& table, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, const map<WordID,WordID>& tags) {
+ if (DEBUG) cerr << "computeOrientationSourceGen" << endl;
+ int oril, orir;
+ for (int idx=1; idx<=SourceFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << "considering SourceFWRuleIdxs[" << idx << "]: " << SourceFWRuleIdxs[3*idx-2] << endl;
+ OrientationSource(SourceFWRuleIdxs[3*idx-2],&oril,&orir);
+ bool isBonus = false; // fas -> first aligned source word, las -> last aligned source word
+ if (SourceFWRuleIdxs[3*idx-2]<=fas) isBonus=true;
+ if (!isBonus) // this is unnecessary because fas <= las assertion
+ if (minTSpan(SourceFWRuleIdxs[3*idx-2])==MINIMUM_INIT && las<=SourceFWRuleIdxs[3*idx-2]) isBonus=true;
+ ScoreOrientationLeft(table,oril,generalize(SourceFWRuleIdxs[3*idx-1],tags),SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ isBonus = false;
+ if (las<=SourceFWRuleIdxs[3*idx-2]) isBonus=true;
+ if (!isBonus) // this is unnecessary becuase fas <= las assertion
+ if (minTSpan(SourceFWRuleIdxs[3*idx-2])==MINIMUM_INIT && SourceFWRuleIdxs[3*idx-2]<=fas) isBonus=true;
+ ScoreOrientationRight(table,orir,generalize(SourceFWRuleIdxs[3*idx-1],tags),SourceFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ for (int idx=1; idx<=SourceFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG)
+ cerr << "considering SourceFWAntsIdxs[" << i_ant << "][" << idx << "]: " << SourceFWAntsIdxs[i_ant][3*idx-2] << endl;
+ // antfas -> first aligned source word antecedent-wise
+ // antlas -> last aligned source word antecedent-wise
+ int antfas = firstSourceAligned(SourceAntsIdxs[i_ant][1]);
+ int antlas = lastSourceAligned(SourceAntsIdxs[i_ant][SourceAntsIdxs[i_ant][0]]);
+ assert(antfas <= antlas);
+ bool aligned = (minTSpan(SourceFWAntsIdxs[i_ant][3*idx-2])!=MINIMUM_INIT);
+ bool Lcompute = true;bool Rcompute = true;
+ if ((aligned && antfas<SourceFWAntsIdxs[i_ant][3*idx-2]) ||
+ (!aligned && antfas < SourceFWAntsIdxs[i_ant][3*idx-2] && SourceFWAntsIdxs[i_ant][3*idx-2] < antlas))
+ Lcompute=false;
+ if ((aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<antlas) ||
+ (!aligned && antfas < SourceFWAntsIdxs[i_ant][3*idx-2] && SourceFWAntsIdxs[i_ant][3*idx-2] < antlas))
+ Rcompute=false;
+ if (!Lcompute && !Rcompute) continue;
+ OrientationSource(SourceFWAntsIdxs[i_ant][3*idx-2],&oril,&orir,Lcompute, Rcompute);
+ bool isBonus = false;
+ if (Lcompute) {
+ if (SourceFWAntsIdxs[i_ant][3*idx-2]<=fas) isBonus = true;
+ //if (!isBonus) // this is unnecessary
+ // if (!aligned && las<=SourceFWAntsIdxs[i_ant][3*idx-2]) isBonus=true;
+ ScoreOrientationLeft(table,oril,generalize(SourceFWAntsIdxs[i_ant][3*idx-1],tags),SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ isBonus = false;
+ if (Rcompute) {
+ if (las<=SourceFWAntsIdxs[i_ant][3*idx-2]) isBonus = true;
+ //if (!isBonus) // this is unnecessary
+ // if (!aligned && SourceFWAntsIdxs[i_ant][3*idx-2]<=fas) isBonus=true;
+ ScoreOrientationRight(table,orir,generalize(SourceFWAntsIdxs[i_ant][3*idx-1],tags),SourceFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_oris,beta_oris);
+ }
+ }
+ }
+}
+void Alignment::computeOrientationTarget(const CountTable& table, double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus) {
+ if (DEBUG) cerr << "computeOrientationTarget" << endl;
+ int oril, orir;
+ for (int idx=1; idx<=TargetFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << "considering TargetFWRuleIdxs[" << idx << "]: " << TargetFWRuleIdxs[3*idx-2] << endl;
+ OrientationTarget(TargetFWRuleIdxs[3*idx-2],&oril,&orir);
+ // the second and the third parameters of ScoreOrientationLeft must be e and f (not f and then e)
+ bool isBonus = false;
+ if (TargetFWRuleIdxs[3*idx-2]<=fat) isBonus = true;
+ if (!isBonus)
+ if (minSSpan(TargetFWRuleIdxs[3*idx-2])==MINIMUM_INIT && lat<=TargetFWRuleIdxs[3*idx-2]) isBonus = true;
+ ScoreOrientationLeft(table,oril,TargetFWRuleIdxs[3*idx-1],TargetFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ isBonus = false;
+ if (lat<=TargetFWRuleIdxs[3*idx-2]) isBonus = true;
+ if (!isBonus)
+ if (minSSpan(TargetFWRuleIdxs[3*idx-2])==MINIMUM_INIT && TargetFWRuleIdxs[3*idx-2]<=fat) isBonus=true;
+ ScoreOrientationRight(table,orir,TargetFWRuleIdxs[3*idx-1],TargetFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ }
+
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ for (int idx=1; idx<=TargetFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG) cerr << "considering TargetFWAntsIdxs[" << i_ant << "][" << idx << "]: " << TargetFWAntsIdxs[i_ant][3*idx-2] << endl;
+ int antfat = firstTargetAligned(TargetAntsIdxs[i_ant][1]);
+ int antlat = lastTargetAligned(TargetAntsIdxs[i_ant][TargetAntsIdxs[i_ant][0]]);
+ int aligned = (minSSpan( TargetFWAntsIdxs[i_ant][3*idx-2])!=MINIMUM_INIT);
+ bool Lcompute = true; bool Rcompute = true;
+ if ((aligned && antfat<TargetFWAntsIdxs[i_ant][3*idx-2]) ||
+ (!aligned && antfat < TargetFWAntsIdxs[i_ant][3*idx-2] && TargetFWAntsIdxs[i_ant][3*idx-2] < antlat))
+ Lcompute=false;
+ if ((aligned && TargetFWAntsIdxs[i_ant][3*idx-2]<antlat) ||
+ (!aligned && antfat < TargetFWAntsIdxs[i_ant][3*idx-2] && TargetFWAntsIdxs[i_ant][3*idx-2] < antlat))
+ Rcompute=false;
+ if (!Lcompute && !Rcompute) continue;
+ bool isBonus = false;
+ OrientationTarget(TargetFWAntsIdxs[i_ant][3*idx-2],&oril,&orir, Lcompute, Rcompute);
+ if (Lcompute) {
+ if (TargetFWAntsIdxs[i_ant][3*idx-2]<=fat) isBonus=true;
+ //if (!isBonus)
+ // if (!aligned && lat<=TargetFWAntsIdxs[i_ant][3*idx-2]) isBonus=true;
+ ScoreOrientationLeft(table,oril,TargetFWAntsIdxs[i_ant][3*idx-1],TargetFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ }
+ isBonus = false;
+ if (Rcompute) {
+ if (lat<=TargetFWAntsIdxs[i_ant][3*idx-2]) isBonus=true;
+ if (!isBonus)
+ //if (!aligned && TargetFWAntsIdxs[i_ant][3*idx-2]<=fat) isBonus=true;
+ ScoreOrientationRight(table,orir,TargetFWAntsIdxs[i_ant][3*idx-1],TargetFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ }
+ }
+ }
+}
+
+void Alignment::computeOrientationTargetBackward(const CountTable& table, double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus) {
+ if (DEBUG) cerr << "computeOrientationTargetBackward" << endl;
+ int oril, orir;
+ for (int idx=1; idx<=TargetFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << "considering TargetFWRuleIdxs[" << idx << "]: " << TargetFWRuleIdxs[3*idx-2] << endl;
+ int* fwblock = blockSource(TargetFWRuleIdxs[3*idx-2],TargetFWRuleIdxs[3*idx-2]);
+ bool aligned = (fwblock[0] == MINIMUM_INIT);
+ if (aligned) {
+ OrientationSource(fwblock[0],fwblock[1],&oril,&orir);
+ } else {
+ OrientationTarget(TargetFWRuleIdxs[3*idx-2],&oril,&orir);
+ }
+ delete fwblock;
+ // the second and the third parameters of ScoreOrientationLeft must be e and f (not f and then e)
+ bool isBonus = false;
+ if (TargetFWRuleIdxs[3*idx-2]<=fat) isBonus = true;
+ //if (!isBonus) // unnecessary
+ //if (minSSpan(TargetFWRuleIdxs[3*idx-2])==MINIMUM_INIT && lat<=TargetFWRuleIdxs[3*idx-2]) isBonus = true;
+ ScoreOrientationLeftBackward(table,oril,TargetFWRuleIdxs[3*idx-1],TargetFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ isBonus = false;
+ if (lat<=TargetFWRuleIdxs[3*idx-2]) isBonus = true;
+ //if (!isBonus) // unnecessary
+ //if (minSSpan(TargetFWRuleIdxs[3*idx-2])==MINIMUM_INIT && TargetFWRuleIdxs[3*idx-2]<=fat) isBonus=true;
+ ScoreOrientationRightBackward(table,orir,TargetFWRuleIdxs[3*idx-1],TargetFWRuleIdxs[3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ }
+
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ int antfat = firstTargetAligned(TargetAntsIdxs[i_ant][1]);
+ int antlat = lastTargetAligned(TargetAntsIdxs[i_ant][TargetAntsIdxs[i_ant][0]]);
+ int antfas = firstSourceAligned(SourceAntsIdxs[i_ant][1]);
+ int antlas = lastSourceAligned(SourceAntsIdxs[i_ant][SourceAntsIdxs[i_ant][0]]);
+ for (int idx=1; idx<=TargetFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG) cerr << "considering TargetFWAntsIdxs[" << i_ant << "][" << idx << "]: " << TargetFWAntsIdxs[i_ant][3*idx-2] << endl;
+ int* fwblock = blockTarget(TargetFWAntsIdxs[i_ant][3*idx-2],TargetFWAntsIdxs[i_ant][3*idx-2]);
+ bool aligned = (fwblock[0]!=MINIMUM_INIT);
+ //bool aligned = (minSSpan( TargetFWAntsIdxs[i_ant][3*idx-2])!=MINIMUM_INIT);
+ bool Lcompute = true; bool Rcompute = true;
+ if ((aligned && antfas<fwblock[0]) ||
+ (!aligned && antfat < fwblock[2]))
+ Lcompute=false;
+ if ((aligned && fwblock[0]<antlas) ||
+ (!aligned && fwblock[3] < antlat))
+ Rcompute=false;
+ if (!Lcompute && !Rcompute) continue;
+ bool isBonus = false;
+ if (aligned) {
+ OrientationSource(fwblock[0],fwblock[1],&oril,&orir,Lcompute,Rcompute);
+ } else {
+ OrientationTarget(TargetFWAntsIdxs[i_ant][3*idx-2],&oril,&orir, Lcompute, Rcompute);
+ }
+ if (Lcompute) {
+ if ((aligned && fwblock[1]<=fas) ||
+ (!aligned && fwblock[3]<=fat))
+ isBonus=true;
+ //if (!isBonus)
+ // if (!aligned && lat<=TargetFWAntsIdxs[i_ant][3*idx-2]) isBonus=true;
+ ScoreOrientationLeftBackward(table,oril,TargetFWAntsIdxs[i_ant][3*idx-1],TargetFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ }
+ isBonus = false;
+ if (Rcompute) {
+ if ((aligned && las<=fwblock[0]) ||
+ (!aligned && lat<=fwblock[2]))
+ isBonus=true;
+ if (!isBonus)
+ //if (!aligned && TargetFWAntsIdxs[i_ant][3*idx-2]<=fat) isBonus=true;
+ ScoreOrientationRightBackward(table,orir,TargetFWAntsIdxs[i_ant][3*idx-1],TargetFWAntsIdxs[i_ant][3*idx],
+ isBonus,cost,bonus,bo1,bo1_bonus,bo2,bo2_bonus,alpha_orit,beta_orit);
+ }
+ delete fwblock;
+ }
+ }
+}
+
+bool Alignment::MemberOf(int* FWIdxs, int pos1, int pos2) {
+ for (int idx=2; idx<=FWIdxs[0]; idx++) {
+ if (FWIdxs[3*(idx-1)-2]==pos1 && FWIdxs[3*idx-2]==pos2) return true;
+ }
+ return false;
+}
+
+void Alignment::computeDominanceSource(const CountTable& table, WordID lfw, WordID rfw,
+ double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus) {
+ // no bonus yet
+ if (DEBUG) cerr << "computeDominanceSource" << endl;
+ if (DEBUG) cerr << " initial cost=" << *cost << ", initial bonus=" << *bonus << endl;
+ for (int idx=2; idx<=SourceFWIdxs[0]; idx++) {
+ if (DEBUG) {
+ cerr << "PrevSourceFWIdxs :" << SourceFWIdxs[3*(idx-1)-2] << "," << SourceFWIdxs[3*(idx-1)-1]
+ << "," << SourceFWIdxs[3*(idx-1)] << endl;
+ cerr << "CurrSourceFWIdxs :" << SourceFWIdxs[3*(idx)-2] << "," << SourceFWIdxs[3*(idx)-1]
+ << "," << SourceFWIdxs[3*(idx)] << endl;
+ }
+ bool compute = true;
+ for (int i_ant=0; i_ant<_Arity && compute; i_ant++) {
+ if (MemberOf(SourceFWAntsIdxs[i_ant],SourceFWIdxs[3*(idx-1)-2],SourceFWIdxs[3*(idx)-2])) {
+ //cerr << "Skipping, they have been calculated in the " << (i_ant+1) << "-th branch" << endl;
+ compute=false;
+ }
+ }
+ if (compute) {
+ int dom = DominanceSource(SourceFWIdxs[3*(idx-1)-2],SourceFWIdxs[3*idx-2]);
+ if (DEBUG) cerr << "dom = " << dom << endl;
+ ScoreDominance(table,dom,SourceFWIdxs[3*(idx-1)-1],SourceFWIdxs[3*idx-1],SourceFWIdxs[3*(idx-1)],SourceFWIdxs[3*idx],
+ cost,bo1,bo2,false,alpha_doms,beta_doms);
+ if (DEBUG) cerr << "cost now is " << *cost << endl;
+ }
+ }
+ if (SourceFWIdxs[0]>0) {
+ if (lfw>=0) {
+ int dom = DominanceSource(0,SourceFWIdxs[1]);
+ if (DEBUG) cerr << " --> lfw = " << lfw << "-" << TD::Convert(lfw) << endl;
+ if (DEBUG) cerr << " --> rfw = " << rfw << "-" << TD::Convert(rfw) << endl;
+ ScoreDominance(table,dom,lfw,SourceFWIdxs[2],lfw,SourceFWIdxs[3],bonus,bo1_bonus,bo2_bonus,true,alpha_doms,beta_doms);
+ }
+ if (rfw>=0) {
+ int dom = DominanceSource(SourceFWIdxs[3*SourceFWIdxs[0]-2],_J-1);
+ ScoreDominance(table,dom,SourceFWIdxs[3*SourceFWIdxs[0]-1],rfw,SourceFWIdxs[3*SourceFWIdxs[0]],
+ rfw,bonus,bo1_bonus,bo2_bonus,true,alpha_doms,beta_doms);
+ }
+ }
+}
+
+void Alignment::computeDominanceSourcePos(const CountTable& table, WordID lfw, WordID rfw,
+ double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2) {
+ if (DEBUG) cerr << "computeDominanceSourcePos" << endl;
+ if (DEBUG) cerr << " initial cost=" << *cost << ", initial bonus=" << *bonus << endl;
+ ostringstream oss;
+ for (int idx=2; idx<=SourceFWIdxs[0]; idx++) {
+ if (DEBUG) {
+ cerr << "PrevSourceFWIdxs :" << SourceFWIdxs[3*(idx-1)-2] << "," << SourceFWIdxs[3*(idx-1)-1]
+ << "," << SourceFWIdxs[3*(idx-1)] << endl;
+ cerr << "CurrSourceFWIdxs :" << SourceFWIdxs[3*(idx)-2] << "," << SourceFWIdxs[3*(idx)-1]
+ << "," << SourceFWIdxs[3*(idx)] << endl;
+ }
+ //if (!((SourceFWAbsIdxs[3*(idx-1)-2]<=maxdepth1 && SourceFWAbsIdxs[3*idx-2]<=maxdepth1) ||
+ // (maxfwidx-SourceFWAbsIdxs[3*(idx-1)-2]+1<=maxdepth2 && maxfwidx-SourceFWAbsIdxs[3*idx-2]+1<=maxdepth2))) continue;
+ bool compute = true;
+ for (int i_ant=0; i_ant<_Arity && compute; i_ant++) {
+ if (MemberOf(SourceFWAntsIdxs[i_ant],SourceFWIdxs[3*(idx-1)-2],SourceFWIdxs[3*(idx)-2])) {
+ //cerr << "Skipping, they have been calculated in the " << (i_ant+1) << "-th branch" << endl;
+ compute=false;
+ }
+ }
+ if (compute) {
+ int dom = DominanceSource(SourceFWIdxs[3*(idx-1)-2],SourceFWIdxs[3*idx-2]);
+ if (DEBUG) cerr << "dom = " << dom << endl;
+ if (maxdepth1+maxdepth2>0) {
+ string source1 = TD::Convert(SourceFWIdxs[3*(idx-1)-1]);
+ string source2 = TD::Convert(SourceFWIdxs[3*(idx)-1]);
+ if (maxdepth1>0) {
+ oss << source1 << "/";
+ if (SourceFWAbsIdxs[3*(idx-1)-2]<=maxdepth1)
+ oss << SourceFWAbsIdxs[3*(idx-1)-2];
+ else
+ oss << "X";
+ WordID source1id = TD::Convert(oss.str());
+ oss.str("");
+ oss << source2 << "/";
+ if (SourceFWAbsIdxs[3*idx-2]<=maxdepth1)
+ oss << SourceFWAbsIdxs[3*idx-2];
+ else
+ oss << "X";
+ WordID source2id = TD::Convert(oss.str());
+ oss.str("");
+ ScoreDominance(table,dom,source1id,source2id,SourceFWIdxs[3*(idx-1)],SourceFWIdxs[3*idx],
+ cost,bo1,bo2,false,alpha_doms,beta_doms);
+ }
+ if (maxdepth2>0) {
+ oss << source1 << "/";
+ if (maxfwidx-SourceFWAbsIdxs[3*(idx-1)-2]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWAbsIdxs[3*(idx-1)-2]+1)*-1);
+ else
+ oss << "X";
+ WordID source1id = TD::Convert(oss.str());
+ oss.str("");
+ oss << source2 << "/";
+ if (maxfwidx-SourceFWAbsIdxs[3*idx-2]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWAbsIdxs[3*(idx-1)-2]+1)*-1);
+ else
+ oss << "X";
+ WordID source2id = TD::Convert(oss.str());
+ oss.str("");
+ ScoreDominance(table,dom,source1id,source2id,SourceFWIdxs[3*(idx-1)],SourceFWIdxs[3*idx],
+ cost,bo1,bo2,false,alpha_doms,beta_doms);
+ }
+ }
+ }
+ }
+ if (SourceFWIdxs[0]>0) {
+ if (lfw>=0) {
+ int dom = DominanceSource(0,SourceFWIdxs[1]);
+ string source1 = TD::Convert(lfw);
+ string source2 = TD::Convert(SourceFWIdxs[2]);
+ if (maxdepth1>0) {
+ oss << source1 << "/";
+ if (SourceFWAbsIdxs[1]-1<=maxdepth1)
+ oss << (SourceFWAbsIdxs[1]-1);
+ else
+ oss << "X";
+ WordID source1id = TD::Convert(oss.str());
+ oss.str("");
+ oss << source2 << "/";
+ if (SourceFWAbsIdxs[1]<=maxdepth1)
+ oss << SourceFWAbsIdxs[1];
+ else
+ oss << "X";
+ WordID source2id = TD::Convert(oss.str());
+ oss.str("");
+ ScoreDominance(table,dom,source1id,source2id,lfw,SourceFWIdxs[3],bonus,bo1_bonus,bo2_bonus,true,alpha_doms,beta_doms);
+ }
+ if (maxdepth2>0) {
+ oss << source1 << "/";
+ if (maxfwidx-(SourceFWAbsIdxs[1]-1)+1<=maxdepth2)
+ oss << ((maxfwidx-(SourceFWAbsIdxs[1]-1)+1)*-1);
+ else
+ oss << "X";
+ WordID source1id = TD::Convert(oss.str());
+ oss.str("");
+ oss << source2 << "/";
+ if (maxfwidx-SourceFWAbsIdxs[1]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWAbsIdxs[1]+1)*-1);
+ else
+ oss << "X";
+ WordID source2id = TD::Convert(oss.str());
+ oss.str("");
+ ScoreDominance(table,dom,source1id,source2id,lfw,SourceFWIdxs[3],bonus,bo1_bonus,bo2_bonus,true,alpha_doms,beta_doms);
+ }
+ }
+ if (rfw>=0) {
+ int dom = DominanceSource(SourceFWIdxs[3*SourceFWIdxs[0]-2],_J-1);
+ string source1 = TD::Convert(SourceFWIdxs[3*SourceFWIdxs[0]-1]);
+ string source2 = TD::Convert(rfw);
+ if (maxdepth1>0) {
+ oss << source1 << "/";
+ if (SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]<=maxdepth1)
+ oss << SourceFWAbsIdxs[3*SourceFWIdxs[0]-2];
+ else
+ oss << "X";
+ WordID source1id = TD::Convert(oss.str());
+ oss.str("");
+ oss << source2 << "/";
+ if (SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]+1<=maxdepth1)
+ oss << (SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]+1);
+ else
+ oss << "X";
+ WordID source2id = TD::Convert(oss.str());
+ ScoreDominance(table,dom,source1id,source2id,SourceFWIdxs[3*SourceFWIdxs[0]],
+ rfw,bonus,bo1_bonus,bo2_bonus,true,alpha_doms,beta_doms);
+ }
+ if (maxdepth2>0) {
+ oss << source1 << "/";
+ if (maxfwidx-SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]+1<=maxdepth2)
+ oss << ((maxfwidx-SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]+1)*-1);
+ else
+ oss << "X";
+ WordID source1id = TD::Convert(oss.str());
+ oss.str("");
+ oss << source2 << "/";
+ if (maxfwidx-(SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]+1)+1<=maxdepth2)
+ oss << ((maxfwidx-(SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]+1)+1)*-1);
+ else
+ oss << "X";
+ WordID source2id = TD::Convert(oss.str());
+ oss.str("");
+ ScoreDominance(table,dom,source1id,source2id,SourceFWIdxs[3*SourceFWIdxs[0]],
+ rfw,bonus,bo1_bonus,bo2_bonus,true,alpha_doms,beta_doms);
+ }
+ }
+ }
+}
+
+
+void Alignment::computeDominanceTarget(const CountTable& table, WordID lfw, WordID rfw,
+ double *cost, double *bonus, double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus) {
+ if (DEBUG) cerr << "computeDominanceTarget" << endl;
+ for (int idx=2; idx<=TargetFWIdxs[0]; idx++) {
+ if (DEBUG) cerr << "PrevTargetFWIdxs :" << TargetFWIdxs[3*(idx-1)-2] << "," << TargetFWIdxs[3*(idx-1)-1] << "," <<TargetFWIdxs[3*(idx-1)] << endl;
+ if (DEBUG) cerr << "CurrTargetFWIdxs :" << TargetFWIdxs[3*(idx)-2] << "," << TargetFWIdxs[3*(idx)-1] << "," <<TargetFWIdxs[3*(idx)] << endl;
+ bool compute = true;
+ for (int i_ant=0; i_ant <_Arity && compute; i_ant++) {
+ if (MemberOf(TargetFWAntsIdxs[i_ant],TargetFWIdxs[3*(idx-1)-2],TargetFWIdxs[3*idx-2])) {
+ if (DEBUG) cerr << "Skipping, they have been calculated in the " << (i_ant+1) << "-th branch" << endl;
+ compute = false;
+ }
+ }
+ if (compute) {
+ int dom = DominanceTarget(TargetFWIdxs[3*(idx-1)-2],TargetFWIdxs[3*idx-2]);
+ //cerr << (3*(idx-1)) << "," << (3*idx) << "," << (3*(idx-1)-1) << "," << (3*idx-1) << endl;
+ if (DEBUG) cerr << "dom target = " << dom << endl;
+ ScoreDominance(table,dom,TargetFWIdxs[3*(idx-1)],TargetFWIdxs[3*idx],TargetFWIdxs[3*(idx-1)-1],TargetFWIdxs[3*idx-1],
+ cost,bo1,bo2,false,alpha_domt,beta_domt);
+ }
+ }
+ if (TargetFWIdxs[0]>0) {
+ if (DEBUG) cerr << "backoff dominance " << endl;
+ if (lfw>=0) {
+ int dom = DominanceTarget(0,TargetFWIdxs[1]);
+ if (DEBUG) cerr << "dom target (with left) = " << dom << endl;
+ ScoreDominance(table,dom,lfw,lfw,TargetFWIdxs[2],TargetFWIdxs[3],bonus,bo1_bonus,bo2_bonus,true,alpha_domt,beta_domt);
+ }
+ if (rfw>=0) {
+ int dom = DominanceTarget(TargetFWIdxs[3*TargetFWIdxs[0]-2],_I-1);
+ if (DEBUG) cerr << "dom target (with right) = " << dom << endl;
+ ScoreDominance(table,dom,TargetFWIdxs[3*TargetFWIdxs[0]-1],TargetFWIdxs[3*TargetFWIdxs[0]],
+ rfw,rfw,bonus,bo1_bonus,bo2_bonus,true,alpha_domt,beta_domt);
+ }
+ }
+
+ //cerr << "END of computeDominanceTarget" << endl;
+}
+
+double Alignment::ScoreDominance(const CountTable& table, int dom, WordID source1, WordID source2, WordID target1, WordID target2) {
+ if (DEBUG) {
+ cerr << "ScoreDominance(source1=" << TD::Convert(source1) << ",source2=" << TD::Convert(source2)
+ << ",target1=" << TD::Convert(target1) << ",target2=" << TD::Convert(target2) << ", dom=" << dom << endl;
+ }
+ string _source1 = TD::Convert(source1);
+ string _source2 = TD::Convert(source2);
+ string _source1idx; string _source2idx;
+ if (table.mode==1) {
+ _source1idx = _source1; _source2idx = _source2;
+ _source1 = _source1idx.substr(0,_source1idx.find_last_of("/"));
+ _source2 = _source2idx.substr(0,_source2idx.find_last_of("/"));
+ }
+ string _target1 = TD::Convert(target1);
+ string _target2 = TD::Convert(target2);
+
+ double count = table.ultimate[dom];
+ double total = table.ultimate[4];
+ double prob = count/total;
+ if (DEBUG) cerr << "level0 " << count << "/" << total << "=" << prob << endl;
+ double alpha = 0.1;
+
+ string key = _source1 + " " + _source2;
+ WordID key_id = TD::Convert(key);
+ map<WordID,int*>::const_iterator it = table.model.find(key_id);
+ bool stop = (it==table.model.end());
+ if (!stop) {
+ stop = true;
+ if (it->second[4]>=0) {
+ count = it->second[dom] + alpha*prob;
+ total = it->second[4] + alpha;
+ prob = count/total;
+ if (DEBUG) cerr << "level1 " << count << "/" << total << "=" << prob << endl;
+ stop = false;
+ }
+ }
+ if (stop) return prob;
+
+ key = _source1 + " " + _source2 + " " + _target1 + " " + _target2;
+ key_id = TD::Convert(key);
+ it = table.model.find(key_id);
+ stop = (it==table.model.end());
+ if (!stop) {
+ stop = true;
+ if (it->second[4]>=0) {
+ count = it->second[dom] + alpha*prob;
+ total = it->second[4] + alpha;
+ prob = count/total;
+ if (DEBUG) cerr << "level2 " << count << "/" << total << "=" << prob << endl;
+ stop = false;
+ }
+ }
+
+ if (table.mode!=1 || stop) return prob;
+ key = _source1 + " " + _source2 + " " + _target1 + " " + _target2;
+ key_id = TD::Convert(key);
+ it = table.model.find(key_id);
+ if (it!=table.model.end()) {
+ if (it->second[4]>=0) {
+ count = it->second[dom] + alpha*prob;
+ total = it->second[4] + alpha;
+ if (DEBUG) cerr << "level3 " << count << "/" << total << "=" << prob << endl;
+ prob = count/total;
+ }
+ }
+
+ return prob;
+}
+
+void Alignment::ScoreDominance(const CountTable& table, int dom, WordID source1, WordID source2, WordID target1, WordID target2, double *cost, double *bo1, double *bo2, bool isBonus, double alpha2, double beta2) {
+ if (DEBUG)
+ cerr << "ScoreDominance(source1=" << TD::Convert(source1) << ",source2=" << TD::Convert(source2)
+ << ",target1=" << TD::Convert(target1) << ",target2=" << TD::Convert(target2) << ",isBonus=" << isBonus << ", alpha2 = " << alpha2 << ", beta2 = " << beta2 << endl;
+ if (DEBUG) cerr << " BEFORE=" << *cost << endl;
+ *cost += ScoreDominance(table,dom,source1,source2,target1,target2);
+ if (DEBUG) cerr << " AFTER=" << *cost << endl;
+}
+
+WordID Alignment::F2EProjectionFromExternal(int idx, const vector<AlignmentPoint>& als, const string& delimiter) {
+ if (DEBUG) {
+ cerr << "F2EProjectionFromExternal=" << idx << endl;
+ for (int i=0; i< als.size(); i++) cerr << "als[" << i << "]=" << als[i] << " ";
+ cerr << endl;
+ }
+ vector<int> alignedTo;
+ for (int i=0; i<als.size(); i++) {
+ if (DEBUG) cerr << als[i] << " ";
+ if (als[i].s_==idx)
+ alignedTo.push_back(als[i].t_);
+ }
+ if (DEBUG) {
+ cerr << endl;
+ cerr << "alignedTo = ";
+ for (int i=0; i<alignedTo.size(); i++) cerr << alignedTo[i] << " ";
+ cerr << endl;
+ }
+ if (alignedTo.size()==0) {
+ if (DEBUG) cerr << "returns [NULL] : " << TD::Convert("NULL") << endl;
+ return TD::Convert("NULL");
+ } else if (alignedTo.size()==1) {
+ if (DEBUG) cerr << "returns [" << TD::Convert(_e[alignedTo[0]]) << "] : " << _e[alignedTo[0]] << endl;
+ return _e[alignedTo[0]]; // if not aligned to many, why bother continuing
+ } else {
+ ostringstream projection;
+ for (int i=0; i<alignedTo.size(); i++) {
+ if (i>0) projection << delimiter;
+ projection << TD::Convert(_e[alignedTo[i]]);
+ }
+ if (DEBUG) {
+ cerr << "projection = " << projection.str() << endl;
+ cerr << "returns = " << TD::Convert(projection.str()) << endl;
+ }
+ return TD::Convert(projection.str());
+ }
+}
+
+WordID Alignment::E2FProjectionFromExternal(int idx, const vector<AlignmentPoint>& als, const string& delimiter) {
+ vector<int> alignedTo;
+ for (int i=0; i<als.size(); i++)
+ if (als[i].t_==idx) alignedTo.push_back(als[i].s_);
+ if (alignedTo.size()==0) {
+ return TD::Convert("NULL");
+ } else if (alignedTo.size()==1) {
+ return _f[alignedTo[0]]; // if not aligned to many, why bother continuing
+ } else {
+ ostringstream projection;
+ for (int i=0; i<alignedTo.size(); i++) {
+ if (i>0) projection << delimiter;
+ projection << TD::Convert(_f[alignedTo[i]]);
+ }
+ return TD::Convert(projection.str());
+ }
+}
+
+
+WordID Alignment::F2EProjection(int idx, const string& delimiter) {
+ if (DEBUG) cerr << "F2EProjection(" << idx << ")" << endl;
+ int e = targetOf(idx);
+ if (e<0) {
+ if (DEBUG) cerr << "projection = NULL" << endl;
+ return TD::Convert("NULL");
+ } else {
+ if (targetOf(idx,e+1)<0) {
+ if (DEBUG) cerr << "e-1=" << (e-1) << ", size=" << _e.size() << endl;
+ return getE(e-1); // if not aligned to many, why bother continuing
+ }
+ ostringstream projection;
+ bool firstTime = true;
+ do {
+ if (!firstTime) projection << delimiter;
+ projection << TD::Convert(_e[e-1]); // transform space
+ firstTime = false;
+ e = targetOf(idx,e+1);
+ //if (DEBUG) cerr << "projection = " << projection.str() << endl;
+ } while(e>=0);
+ return TD::Convert(projection.str());
+ }
+}
+
+WordID Alignment::E2FProjection(int idx, const string& delimiter) {
+ //cerr << "E2FProjection(" << idx << ")" << endl;
+ //cerr << "i" << endl;
+ int f = sourceOf(idx);
+ //cerr << "j, f=" << f << endl;
+ if (f<0) {
+ //cerr << "projection = NULL" << endl;
+ return TD::Convert("NULL");
+ } else {
+ if (sourceOf(idx,f+1)<0) return getF(f-1);
+ bool firstTime = true;
+ ostringstream projection(ostringstream::out);
+ do {
+ if (!firstTime) projection << delimiter;
+ projection << TD::Convert(_f[f-1]); //transform space
+ firstTime = false;
+ f = sourceOf(idx,f+1);
+ //cerr << "projection = " << projection.str() << endl;
+ } while(f>=0);
+ return TD::Convert(projection.str());
+ }
+}
+void Alignment::computeBorderDominanceSource(const CountTable& table, double *cost, double *bonus, double *state_mono,
+ double *state_nonmono, TRule &rule, const std::vector<const void*>& ant_contexts, const map<WordID,int>& sfw) {
+ // HACK: GOAL is assumed to always be "S"
+ if (DEBUG) cerr << "computeBorderDominanceSource" << endl;
+ std::vector<WordID> f = rule.f();
+ std::vector<WordID> e = rule.e();
+ int nt_index[f.size()];
+ int nt_count=0;
+ for (int i=0; i<f.size(); i++) nt_index[i] = (f[i]<0)? ++nt_count : 0;
+ if (DEBUG) {
+ cerr << "f = ";
+ for (int i=0; i<f.size(); i++) cerr << i << "." << "[" << f[i] << "] ";
+ cerr << endl;
+ cerr << "e = ";
+ for (int i=0; i<e.size(); i++) cerr << i << "." << "[" << e[i] << "] ";
+ cerr << endl;
+ }
+ bool flag[f.size()];
+ for (int idx=0; idx<f.size(); idx++) flag[idx]=false;
+ //collect alignments
+ vector<int> als;
+ for (std::vector<AlignmentPoint>::const_iterator i = rule.als().begin(); i != rule.als().end(); ++i) {
+ int s = i->s_; int t = i->t_;
+ als.push_back(link(t,s));
+ }
+ if (DEBUG) cerr << "rule.Arity=" << rule.Arity() << endl;
+ if (rule.Arity()>0) {
+ int ntc=0;
+ for (int s=0; s<f.size(); s++) {
+ if (f[s]<=0) {
+ if (DEBUG) cerr << "f[s]=" << f[s] << "+" << s << " - ";
+ for (int t=0; t<e.size(); t++) {
+ if (e[t]==ntc) {
+ if (DEBUG) cerr << "e[t]=" << e[t] << "+" << t <<endl;
+ als.push_back(link(t,s));
+ ntc--; break;
+ }
+ }
+ }
+ }
+ }
+ if (DEBUG) {
+ cerr << "unsorted alignments (nonterminals and terminals)" << endl;
+ for (int i=0; i<als.size(); i++)
+ cerr << source(als[i]) << "-" << target(als[i]) << " ";
+ cerr << endl;
+ }
+ // sort alignments according to target
+ std::sort(als.begin(),als.end());
+ if (DEBUG) {
+ cerr << "sorted alignments (nonterminals and terminals)" << endl;
+ for (int i=0; i<als.size(); i++)
+ cerr << source(als[i]) << "-" << target(als[i]) << " ";
+ cerr << endl;
+ }
+ // 0 -> neither, 1 -> leftFirst, 2 -> rightFirst, 3 -> dontCare
+ // ScoreDominance(const CountTable& table, int dom, WordID source1, WordID source2, WordID target1, WordID target2)
+ int prevs = 0;
+ for (int i=0; i<als.size(); i++) {
+ int currs = target(als[i]); //int currt = source(als[i]);
+ if (DEBUG) cerr << "prevs=" << prevs << ", currs=" << currs << endl << endl;
+ if (currs<prevs) {
+ if (DEBUG) cerr << "currs<prevs" << endl;
+ for (int s = currs; s <= prevs; s++) {
+ if (sfw.find(f[s])!=sfw.end()) {
+ WordID target = F2EProjectionFromExternal(s,rule.a_,"_SEP_");
+ if (DEBUG) cerr<<" f[s]="<<TD::Convert(f[s])<<" is a function word, target="<<TD::Convert(target)<<endl;
+ //*cost += ScoreDominance(table,1,kSOS,f[s],kSOS,target) + ScoreDominance(table,2,f[s],kEOS,target,kEOS);
+ *cost += ScoreDominance(table,1,kSOS,f[s],kUNK,kUNK) + ScoreDominance(table,2,f[s],kEOS,kUNK,kUNK);
+ if (DEBUG) cerr << " resulting cost="<< *cost << endl;
+ } else if (f[s]<=0) {
+ if (DEBUG) cerr << " f[s]= is a nonterminal" << endl;
+ const int* ants = reinterpret_cast<const int *>(ant_contexts[nt_index[s]-1]);
+ *cost += Dwarf::IntegerToDouble(ants[51]); // 50->mono, 51->non-mono
+ if (DEBUG) cerr << " adding "<< Dwarf::IntegerToDouble(ants[51]) << " into cost, resulting = " << *cost << endl;
+ }
+ flag[s] = true;
+ }
+ }
+ prevs = currs;
+ }
+ if (DEBUG) cerr << "bonus and state matter" << endl;
+ for (int s=0; s<rule.f().size(); s++) {
+ if (!flag[s]) {
+ if (sfw.find(f[s])!=sfw.end()) {
+ WordID target = F2EProjectionFromExternal(s,rule.a_,"_SEP_");
+ if (DEBUG) cerr<<" f[s]="<<TD::Convert(f[s])<<" is a function word, target="<<TD::Convert(target)<<endl;
+ //double indbonus = ScoreDominance(table,3,kSOS,f[s],kSOS,target) + ScoreDominance(table,3,f[s],kEOS,target,kEOS);
+ double indbonus = ScoreDominance(table,3,kSOS,f[s],kUNK,kUNK) + ScoreDominance(table,3,f[s],kEOS,kUNK,kUNK);
+ *bonus += indbonus;
+ *state_mono += indbonus;
+ //*state_nonmono += ScoreDominance(table,1,kSOS,f[s],kSOS,target) + ScoreDominance(table,2,f[s],kEOS,target,kEOS);
+ *state_nonmono += ScoreDominance(table,1,kSOS,f[s],kUNK,kUNK) + ScoreDominance(table,2,f[s],kEOS,kUNK,kUNK);
+ if (DEBUG) cerr<<" new bonus="<<*bonus<<", new state="<<*state_mono<<","<<*state_nonmono<<endl;
+ } else if (f[s]<=0) {
+ if (DEBUG) cerr << " f[s]="<< f[s] <<" is a nonterminal" << endl;
+ const int* ants = reinterpret_cast<const int *>(ant_contexts[nt_index[s]-1]);
+ double indbonus = Dwarf::IntegerToDouble(ants[50]);
+ *bonus += indbonus;
+ *state_mono += indbonus;
+ *state_nonmono += Dwarf::IntegerToDouble(ants[51]);
+ if (DEBUG) cerr << " propagating state=" << *state_mono <<","<< *state_nonmono<< endl;
+ }
+ }
+ }
+ if (DEBUG) cerr << "LHS:" << rule.GetLHS() << ":" << TD::Convert(rule.GetLHS()*-1) <<endl;
+ if (rule.GetLHS()*-1==TD::Convert("S")) {
+ *state_mono = 0;
+ *state_nonmono = 0;
+ for (int i=0; i<rule.Arity(); i++) {
+ const int* ants = reinterpret_cast<const int *>(ant_contexts[i]);
+ *cost += Dwarf::IntegerToDouble(ants[50]);
+ }
+ *bonus = 0;
+ }
+ if (DEBUG) cerr << "-->>>> cost="<<*cost<<", bonus="<<*bonus<<", state_mono="<<*state_mono<<", state_nonmono="<<*state_nonmono<<endl;
+}
+
+bool Alignment::prepare(TRule& rule, const std::vector<const void*>& ant_contexts, const map<WordID,int>& sfw, const map<WordID,int>& tfw,const Lattice& sourcelattice, int spanstart, int spanend) {
+ if (DEBUG) cerr << "===Rule===" << rule.AsString() << endl;
+ _f = rule.f();
+ _e = rule.e();
+ _Arity = rule.Arity();
+ if (DEBUG) {
+ cerr << "F: ";
+ for (int idx=0; idx<_f.size(); idx++) cerr << _f[idx] << " ";
+ cerr << endl;
+ cerr << "F': ";
+ for (int idx=0; idx<_f.size(); idx++)
+ if (_f[idx]>=0) {
+ cerr << TD::Convert(_f[idx]) << " ";
+ } else {
+ cerr << TD::Convert(_f[idx]*-1);
+ }
+ cerr << endl;
+ cerr << "E: ";
+ for (int idx=0; idx<_e.size(); idx++)
+ cerr << _e[idx] << " ";
+ cerr << endl;
+ cerr << "E': ";
+ for (int idx=0; idx<_e.size(); idx++)
+ if (_e[idx]>0) {
+ cerr << TD::Convert(_e[idx]) << " ";
+ } else {
+ cerr << "[NT]" << " ";
+ }
+ cerr << endl;
+ }
+
+ SourceFWRuleIdxs[0]=0;
+ SourceFWRuleAbsIdxs[0]=0;
+ for (int idx=1; idx<=_f.size(); idx++) { // in transformed space
+ if (sfw.find(_f[idx-1])!=sfw.end()) {
+ SourceFWRuleIdxs[0]++;
+ SourceFWRuleAbsIdxs[++SourceFWRuleAbsIdxs[0]]=GetFWGlobalIdx(idx,sourcelattice,_f,spanstart,spanend,ant_contexts,sfw);
+ SourceFWRuleIdxs[3*SourceFWRuleIdxs[0]-2]=idx;
+ SourceFWRuleIdxs[3*SourceFWRuleIdxs[0]-1]=_f[idx-1];
+ SourceFWRuleIdxs[3*SourceFWRuleIdxs[0]] =F2EProjectionFromExternal(idx-1,rule.a_,"_SEP_");
+ }
+ }
+ TargetFWRuleIdxs[0]=0;
+ for (int idx=1; idx<=_e.size(); idx++) { // in transformed space
+ if (tfw.find(_e[idx-1])!=tfw.end()) {
+ TargetFWRuleIdxs[0]++;
+ TargetFWRuleIdxs[3*TargetFWRuleIdxs[0]-2]=idx;
+ TargetFWRuleIdxs[3*TargetFWRuleIdxs[0]-1]=E2FProjectionFromExternal(idx-1,rule.a_,"_SEP_");
+ TargetFWRuleIdxs[3*TargetFWRuleIdxs[0]] =_e[idx-1];
+ }
+ }
+
+ if (DEBUG) {
+ cerr << "SourceFWRuleIdxs[" << SourceFWRuleIdxs[0] << "]:";
+ for (int idx=1; idx<=SourceFWRuleIdxs[0]; idx++) {
+ cerr << " idx:" << SourceFWRuleIdxs[3*idx-2];
+ cerr << " absidx:" << SourceFWRuleAbsIdxs[idx];
+ cerr << " F:" << SourceFWRuleIdxs[3*idx-1];
+ cerr << " E:" << SourceFWRuleIdxs[3*idx];
+ cerr << "; ";
+ }
+ cerr << endl;
+ cerr << "TargetFWRuleIdxs[" << TargetFWRuleIdxs[0] << "]:";
+ for (int idx=1; idx<=TargetFWRuleIdxs[0]; idx++) {
+ cerr << " idx:" << TargetFWRuleIdxs[3*idx-2];
+ cerr << " F:" << TargetFWRuleIdxs[3*idx-1];
+ cerr << " E:" << TargetFWRuleIdxs[3*idx];
+ }
+ cerr << endl;
+ }
+ if (SourceFWRuleIdxs[0]+TargetFWRuleIdxs[0]==0) {
+ bool nofw = true;
+ for (int i_ant=0; i_ant<_Arity && nofw; i_ant++) {
+ const int* ants = reinterpret_cast<const int *>(ant_contexts[i_ant]);
+ if (ants[0]>=0||ants[3]>=0||ants[6]>=0||ants[9]>=0) nofw=false;
+ }
+ if (nofw) return true;
+ }
+ //cerr << "clearing als first" << endl;
+ clearAls(_J,_I);
+
+ if (DEBUG) cerr << "A["<< rule.a_.size() << "]: " ;
+ RuleAl[0]=0;
+ // add phrase start boundary
+ RuleAl[0]++; RuleAl[RuleAl[0]*2-1]=0; RuleAl[RuleAl[0]*2]=0;
+ if (DEBUG) cerr << RuleAl[RuleAl[0]*2-1] << "-" << RuleAl[RuleAl[0]*2] << " ";
+ for (int idx=0; idx<rule.a_.size(); idx++) {
+ RuleAl[0]++;
+ RuleAl[RuleAl[0]*2-1]=rule.a_[idx].s_+1;
+ RuleAl[RuleAl[0]*2] =rule.a_[idx].t_+1;
+ if (DEBUG) cerr << RuleAl[RuleAl[0]*2-1] << "-" << RuleAl[RuleAl[0]*2] << " ";
+ }
+ // add phrase end boundary
+ RuleAl[0]++; RuleAl[RuleAl[0]*2-1]=_f.size()+1; RuleAl[RuleAl[0]*2]=_e.size()+1;
+ if (DEBUG) cerr << RuleAl[RuleAl[0]*2-1] << "-" << RuleAl[RuleAl[0]*2] << " ";
+ if (DEBUG) cerr << endl;
+
+ SourceRuleIdxs[0] = _f.size()+2; // +2 (phrase boundaries)
+ TargetRuleIdxs[0] = _e.size()+2;
+ int ntidx=-1;
+ for (int idx=0; idx<_f.size()+2; idx++) { // idx in transformed space
+ SourceRuleIdxs[idx+1]=idx;
+ if (0<idx && idx<=_f.size()) if (_f[idx-1]<0) SourceRuleIdxs[idx+1]=ntidx--;
+ }
+ for (int idx=0; idx<_e.size()+2; idx++) {
+ TargetRuleIdxs[idx+1]=idx;
+ if (0<idx && idx<=_e.size()) {
+ //cerr << "_e[" <<(idx-1)<< "]=" << _e[idx-1] << endl;
+ if (_e[idx-1]<=0) TargetRuleIdxs[idx+1]=_e[idx-1]-1;
+ }
+ }
+ if (DEBUG) {
+ cerr << "SourceRuleIdxs:";
+ for (int idx=0; idx<SourceRuleIdxs[0]+1; idx++)
+ cerr << " " << SourceRuleIdxs[idx];
+ cerr << endl;
+ cerr << "TargetRuleIdxs:";
+ for (int idx=0; idx<TargetRuleIdxs[0]+1; idx++)
+ cerr << " " << TargetRuleIdxs[idx];
+ cerr << endl;
+ }
+
+ // sloppy, the integrity of anstates is assumed
+ // total = 50 bytes
+ // first 3 ints for leftmost source function words (1 for index, 4 for source WordID and 4 for target WordI
+ // second 3 for rightmost source function words
+ // third 3 for leftmost target function words
+ // fourth 3 for rightmost target function words
+ // the next 1 int for the number of alignments
+ // the remaining 37 ints for alignments (source then target)
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ const int* ants = reinterpret_cast<const int *>(ant_contexts[i_ant]);
+ int span = ants[Dwarf::STATE_SIZE-1];
+ if (DEBUG) {
+ cerr << "antcontexts[" << i_ant << "] ";
+ for (int idx=0; idx<Dwarf::STATE_SIZE; idx++) cerr << idx << "." << ants[idx] << " ";
+ cerr << endl;
+ cerr << "i,j = " << source(ants[Dwarf::STATE_SIZE-1]) << "," << target(ants[Dwarf::STATE_SIZE-1]) << endl;
+ }
+ SourceFWAntsIdxs[i_ant][0]=0;
+ SourceFWAntsAbsIdxs[i_ant][0]=0;
+ if (ants[0]>=0) {
+ // Given a span, give the index of the first function word
+ int firstfwidx = GetFirstFWIdx(source(span),target(span),sourcelattice,sfw);
+ if (DEBUG) cerr << " firstfwidx = " << firstfwidx << endl;
+ int fwcount = 0;
+ if (ants[1]>=0) { // one function word
+ SourceFWAntsIdxs[i_ant][0]++; SourceFWAntsIdxs[i_ant][1]=ants[0];
+ SourceFWAntsIdxs[i_ant][2]=ants[1]; SourceFWAntsIdxs[i_ant][3]=ants[2];
+ fwcount++;
+ } else { // if ants[1] < 0 then compound fws
+ //cerr << "ants[1]<0" << endl;
+ istringstream ossf(TD::Convert(ants[1]*-1)); string ffw;
+ istringstream osse(TD::Convert(ants[2])); string efw; //projection would be mostly NULL
+ int delta=ants[0];
+ while (osse >> efw && ossf >> ffw) {
+ SourceFWAntsIdxs[i_ant][0]++;
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3-2]=ants[0]-(delta--);
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3-1]=TD::Convert(ffw);
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3] =TD::Convert(efw);
+ fwcount++;
+ }
+ }
+ if (DEBUG) cerr << " fwcount=" << fwcount << endl;
+ SourceFWAntsAbsIdxs[i_ant][0]=fwcount;
+ for (int i=1; i<=fwcount; i++) SourceFWAntsAbsIdxs[i_ant][i]=firstfwidx++;
+ }
+ if (ants[3]>=0) {
+ int lastfwidx = GetLastFWIdx(source(span),target(span),sourcelattice,sfw);
+ if (DEBUG) cerr << " lastfwidx = " << lastfwidx << endl;
+ int fwcount=0;
+ if (ants[4]>=0) {
+ fwcount++;
+ SourceFWAntsIdxs[i_ant][0]++;
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3-2]=ants[3];
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3-1]=ants[4];
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3] =ants[5];
+ } else { // if ants[4] < 0 then compound fws
+ //cerr << "ants[4]<0" << endl;
+ istringstream ossf(TD::Convert(ants[4]*-1)); string ffw;
+ istringstream osse(TD::Convert(ants[5])); string efw;
+ int delta=0;
+ while (osse >> efw && ossf >> ffw) {
+ fwcount++;
+ SourceFWAntsIdxs[i_ant][0]++;
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3-2]=ants[3]+(delta++);
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3-1]=TD::Convert(ffw);
+ SourceFWAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][0]*3] =TD::Convert(efw);
+ }
+ }
+ if (DEBUG) cerr << " fwcount=" << fwcount << endl;
+ for (int i=1; i<=fwcount; i++) SourceFWAntsAbsIdxs[i_ant][SourceFWAntsAbsIdxs[i_ant][0]+i]=lastfwidx-fwcount+i;
+ SourceFWAntsAbsIdxs[i_ant][0]+=fwcount;
+ }
+ TargetFWAntsIdxs[i_ant][0]=0;
+ if (ants[6]>=0) {
+ if (ants[8]>=0) { // check the e part
+ TargetFWAntsIdxs[i_ant][0]++;
+ TargetFWAntsIdxs[i_ant][1]=ants[6];
+ TargetFWAntsIdxs[i_ant][2]=ants[7];
+ TargetFWAntsIdxs[i_ant][3]=ants[8];
+ } else { // if ants[8] < 0 then compound fws
+ //cerr << "ants[8]<0" << endl;
+ //cerr << "ants[7]=" << TD::Convert(ants[7]) << endl;
+ //cerr << "ants[8]=" << TD::Convert(ants[8]*-1) << endl;
+ istringstream ossf(TD::Convert(ants[7])); string ffw;
+ istringstream osse(TD::Convert(ants[8]*-1)); string efw;
+ int delta=ants[6];
+ while (osse >> efw && ossf >> ffw) {
+ //cerr << "efw="<< efw << ",ffw=" << ffw << endl;
+ TargetFWAntsIdxs[i_ant][0]++;
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3-2]=ants[6]-(delta--);
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3-1]=TD::Convert(ffw);
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3] =TD::Convert(efw);
+ }
+ }
+ }
+ if (ants[9]>=0) {
+ if (ants[11]>=0) {
+ TargetFWAntsIdxs[i_ant][0]++;
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3-2]=ants[9];
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3-1]=ants[10];
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3] =ants[11];
+ } else {
+ //cerr << "ants[11]<0" << endl;
+ //cerr << "ants[10]=" << TD::Convert(ants[10]) << endl;
+ //cerr << "ants[11]=" << TD::Convert(ants[11]*-1) << endl;
+ istringstream ossf(TD::Convert(ants[10])); string ffw;
+ istringstream osse(TD::Convert(ants[11]*-1)); string efw;
+ int delta = 0;
+ while (osse >> efw && ossf >> ffw) {
+ //cerr << "efw="<< efw << ",ffw=" << ffw << endl;
+ TargetFWAntsIdxs[i_ant][0]++;
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3-2]=ants[9]+(delta++);
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3-1]=TD::Convert(ffw);
+ TargetFWAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][0]*3] =TD::Convert(efw);
+ }
+ }
+ }
+ AntsAl[i_ant][0]=ants[12];//number of alignments
+ for (int idx=1; idx<=AntsAl[i_ant][0]; idx++) {
+ AntsAl[i_ant][idx*2-1] = source(ants[12+idx]);
+ AntsAl[i_ant][idx*2] = target(ants[12+idx]);
+ }
+ }
+
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ int length = AntsAl[i_ant][0];
+ int maxs = -1000;
+ int maxt = -1000;
+ for (int idx=0; idx<length; idx++) {
+ if (maxs<AntsAl[i_ant][2*idx+1]) maxs = AntsAl[i_ant][2*idx+1];
+ if (maxt<AntsAl[i_ant][2*idx+2]) maxt = AntsAl[i_ant][2*idx+2];
+ }
+ if (DEBUG) cerr << "SourceFWAntsIdxs[" <<i_ant<<"][0]=" << SourceFWAntsIdxs[i_ant][0] << endl;
+ for (int idx=1; idx<=SourceFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG) {
+ cerr << "SourceFWAntsIdxs["<<i_ant<<"]["<<(3*idx-2)<<"]="<<SourceFWAntsIdxs[i_ant][3*idx-2];
+ cerr << ","<<SourceFWAntsIdxs[i_ant][3*idx-1]<<","<<SourceFWAntsIdxs[i_ant][3*idx]<<endl;
+ cerr << "SourceFWAntsAbsIdxs["<<i_ant<<"]["<<idx<<"]="<<SourceFWAntsAbsIdxs[i_ant][idx] << endl;
+ }
+ if (maxs<SourceFWAntsIdxs[i_ant][3*idx-2]) maxs=SourceFWAntsIdxs[i_ant][3*idx-2];
+ }
+ if (DEBUG) cerr << "TargetFWAntsIdxs[" <<i_ant<<"][0]=" << TargetFWAntsIdxs[i_ant][0] << endl;
+ for (int idx=1; idx<=TargetFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG) {
+ cerr << "TargetFWAntsIdxs["<<i_ant<<"]["<<(3*idx-2)<<"]="<<TargetFWAntsIdxs[i_ant][3*idx-2];
+ cerr << ","<<TargetFWAntsIdxs[i_ant][3*idx-1]<<","<<TargetFWAntsIdxs[i_ant][3*idx]<<endl;
+ }
+ if (maxt<TargetFWAntsIdxs[i_ant][3*idx-2]) maxt=TargetFWAntsIdxs[i_ant][3*idx-2];
+ }
+ SourceAntsIdxs[i_ant][0] = maxs+1;
+ if (DEBUG) cerr << "SourceAntsIdxs[" << i_ant << "][0]=" <<SourceAntsIdxs[i_ant][0] << endl;
+ for (int idx=0; idx<SourceAntsIdxs[i_ant][0]; idx++) SourceAntsIdxs[i_ant][idx+1]=idx;
+ TargetAntsIdxs[i_ant][0] = maxt+1;
+ if (DEBUG) cerr << "TargetAntsIdxs[" << i_ant << "][0]=" <<TargetAntsIdxs[i_ant][0] << endl;
+ for (int idx=0; idx<TargetAntsIdxs[i_ant][0]; idx++) TargetAntsIdxs[i_ant][idx+1]=idx;
+ }
+ int TotalSource = SourceRuleIdxs[0] - _Arity;
+ for (int idx=0; idx<_Arity; idx++) TotalSource += SourceAntsIdxs[idx][0];
+ int TotalTarget = TargetRuleIdxs[0] - _Arity;
+ for (int idx=0; idx<_Arity; idx++) TotalTarget += TargetAntsIdxs[idx][0];
+ if (DEBUG) cerr << "TotalSource = "<< TotalSource << ", TotalTarget = "<< TotalTarget << endl;
+ int curr = 0;
+ for (int idx=1; idx<=SourceRuleIdxs[0]; idx++) {
+ if (SourceRuleIdxs[idx]>=0) {
+ SourceRuleIdxs[idx]=curr++;
+ } else {
+ int i_ant = SourceRuleIdxs[idx]*-1-1;
+ if (DEBUG) cerr << "SourceAntsIdxs[" << i_ant << "]" << endl;
+ for (int idx2=1; idx2<=SourceAntsIdxs[i_ant][0]; idx2++) {
+ SourceAntsIdxs[i_ant][idx2]=curr++;
+ if (DEBUG) cerr << SourceAntsIdxs[i_ant][idx2] << " ";
+ }
+ if (DEBUG) cerr << endl;
+ }
+ }
+ if (DEBUG) {
+ cerr << "SourceRuleIdxs" << endl;
+ for (int idx=1; idx<=SourceRuleIdxs[0]; idx++) cerr << SourceRuleIdxs[idx] << " ";
+ cerr << endl;
+ }
+ curr = 0;
+ for (int idx=1; idx<=TargetRuleIdxs[0]; idx++) {
+ if (TargetRuleIdxs[idx]>=0) {
+ TargetRuleIdxs[idx]=curr++;
+ } else {
+ int i_ant = TargetRuleIdxs[idx]*-1-1;
+ if (DEBUG) cerr << "TargetRuleIdxs[" << i_ant << "]" << endl;
+ for (int idx2=1; idx2<=TargetAntsIdxs[i_ant][0]; idx2++) {
+ TargetAntsIdxs[i_ant][idx2]=curr++;
+ if (DEBUG) cerr << TargetAntsIdxs[i_ant][idx2] << " ";
+ }
+ if (DEBUG) cerr << endl;
+ }
+ }
+ if (DEBUG) {
+ cerr << "TargetRuleIdxs" << endl;
+ for (int idx=1; idx<=TargetRuleIdxs[0]; idx++) cerr << TargetRuleIdxs[idx] << " ";
+ cerr << endl;
+ }
+ for (int idx=1; idx<=RuleAl[0]; idx++) {
+ if (DEBUG) {
+ cerr << RuleAl[idx*2-1] << " - " << RuleAl[idx*2] << " to ";
+ cerr << SourceRuleIdxs[RuleAl[idx*2-1]+1] << " - " << TargetRuleIdxs[RuleAl[idx*2]+1] << endl;
+ }
+ set(SourceRuleIdxs[RuleAl[idx*2-1]+1],TargetRuleIdxs[RuleAl[idx*2]+1]);
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ for (int idx=1; idx<=AntsAl[i_ant][0]; idx++) {
+ if (DEBUG) {
+ cerr << AntsAl[i_ant][2*idx-1] << " - " << AntsAl[i_ant][2*idx] << " to ";
+ cerr << SourceAntsIdxs[i_ant][AntsAl[i_ant][2*idx-1]+1] << " - ";
+ cerr << TargetAntsIdxs[i_ant][AntsAl[i_ant][2*idx]+1] << endl;
+ }
+ set(SourceAntsIdxs[i_ant][AntsAl[i_ant][2*idx-1]+1],TargetAntsIdxs[i_ant][AntsAl[i_ant][2*idx]+1]);
+ }
+ }
+ SourceFWIdxs[0]=0;
+ SourceFWAbsIdxs[0]=0;
+ if (DEBUG) cerr << "SourceFWRuleIdxs:" << endl;
+ for (int idx=1; idx<=SourceFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << SourceFWRuleIdxs[3*idx-2] << " to " << SourceRuleIdxs[SourceFWRuleIdxs[3*idx-2]+1] << endl;
+ SourceFWRuleIdxs[3*idx-2] = SourceRuleIdxs[SourceFWRuleIdxs[3*idx-2]+1];
+ SourceFWAbsIdxs[0]++;
+ SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]=SourceFWRuleAbsIdxs[idx];
+ SourceFWIdxs[0]++;
+ SourceFWIdxs[3*SourceFWIdxs[0]-2]=SourceFWRuleIdxs[3*idx-2];
+ SourceFWIdxs[3*SourceFWIdxs[0]-1]=SourceFWRuleIdxs[3*idx-1];
+ SourceFWIdxs[3*SourceFWIdxs[0]] =SourceFWRuleIdxs[3*idx];
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ if (DEBUG) cerr << "SourceFWAntsIdxs[" << i_ant << "]" << endl;
+ for (int idx=1; idx<=SourceFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG)
+ cerr << SourceFWAntsIdxs[i_ant][3*idx-2] << " to " << SourceAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][3*idx-2]+1] << endl;
+ SourceFWAntsIdxs[i_ant][3*idx-2] = SourceAntsIdxs[i_ant][SourceFWAntsIdxs[i_ant][3*idx-2]+1];
+ SourceFWAbsIdxs[0]++;
+ SourceFWAbsIdxs[3*SourceFWAbsIdxs[0]-2]=SourceFWAntsAbsIdxs[i_ant][idx];
+ SourceFWIdxs[0]++;
+ SourceFWIdxs[3*SourceFWIdxs[0]-2]=SourceFWAntsIdxs[i_ant][3*idx-2];
+ SourceFWIdxs[3*SourceFWIdxs[0]-1]=SourceFWAntsIdxs[i_ant][3*idx-1];
+ SourceFWIdxs[3*SourceFWIdxs[0]] =SourceFWAntsIdxs[i_ant][3*idx];
+ }
+ }
+ sort(SourceFWIdxs);
+ sort(SourceFWAbsIdxs);
+ if (DEBUG) {
+ cerr << "SourceFWIdxs : ";
+ for (int idx=1; idx<=SourceFWIdxs[0]; idx++) {
+ cerr << "idx:" << SourceFWIdxs[3*idx-2] << ",";
+ cerr << "F:" << SourceFWIdxs[3*idx-1] << ",";
+ cerr << "E:" << SourceFWIdxs[3*idx] << " ";
+ }
+ cerr << endl;
+ }
+ TargetFWIdxs[0]=0;
+ if (DEBUG) cerr << "TargetFWRuleIdxs:" << endl;
+ for (int idx=1; idx<=TargetFWRuleIdxs[0]; idx++) {
+ if (DEBUG) cerr << TargetFWRuleIdxs[3*idx-2] << " to " << TargetRuleIdxs[TargetFWRuleIdxs[3*idx-2]+1] << endl;
+ TargetFWRuleIdxs[3*idx-2] = TargetRuleIdxs[TargetFWRuleIdxs[3*idx-2]+1];
+ TargetFWIdxs[0]++;
+ TargetFWIdxs[3*TargetFWIdxs[0]-2]=TargetFWRuleIdxs[3*idx-2];
+ TargetFWIdxs[3*TargetFWIdxs[0]-1]=TargetFWRuleIdxs[3*idx-1];
+ TargetFWIdxs[3*TargetFWIdxs[0]] =TargetFWRuleIdxs[3*idx];
+ }
+ for (int i_ant=0; i_ant<_Arity; i_ant++) {
+ if (DEBUG) cerr << "TargetFWAntsIdxs[" << i_ant << "]" << endl;
+ for (int idx=1; idx<=TargetFWAntsIdxs[i_ant][0]; idx++) {
+ if (DEBUG) cerr << TargetFWAntsIdxs[i_ant][3*idx-2] << " to " << TargetAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][3*idx-2]+1] << endl;
+ TargetFWAntsIdxs[i_ant][3*idx-2] = TargetAntsIdxs[i_ant][TargetFWAntsIdxs[i_ant][3*idx-2]+1];
+ TargetFWIdxs[0]++;
+ TargetFWIdxs[3*TargetFWIdxs[0]-2]=TargetFWAntsIdxs[i_ant][3*idx-2];
+ TargetFWIdxs[3*TargetFWIdxs[0]-1]=TargetFWAntsIdxs[i_ant][3*idx-1];
+ TargetFWIdxs[3*TargetFWIdxs[0]] =TargetFWAntsIdxs[i_ant][3*idx];
+ }
+ }
+ sort(TargetFWIdxs);
+ if (DEBUG) {
+ cerr << "TargetFWIdxs : ";
+ for (int idx=1; idx<=TargetFWIdxs[0]; idx++) {
+ cerr << "idx:" << TargetFWIdxs[3*idx-2]<< ",";
+ cerr << "E:" << TargetFWIdxs[3*idx-1]<< ",";
+ cerr << "F:" << TargetFWIdxs[3*idx]<< " ";
+ }
+ cerr << endl;
+ cerr << AsString() << endl;
+ }
+ fas = firstSourceAligned(1); las = lastSourceAligned(_J-2);
+ fat = firstTargetAligned(1); lat = lastTargetAligned(_I-2);
+ if (DEBUG) cerr << "fas=" << fas << ", las=" << las << ", fat=" << fat << ", lat=" << lat << endl;
+ assert(fas<=las);
+ assert(fat<=lat);
+ SetCurrAlVector();
+ if (DEBUG) cerr << "end prepare" << endl;
+ return false;
+}
+
+string Alignment::AsStringSimple() {
+ ostringstream stream;
+ for (int j=0; j<getJ(); j++) {
+ int t = targetOf(j,minTSpan(j));
+ while (t>=0) {
+ stream << " " << j << "-" << t;
+ t = targetOf(j,t+1);
+ }
+ }
+ return stream.str();
+};
+
+
+string Alignment::AsString() {
+ ostringstream stream;
+ stream << "J:" << getJ() << " I:" << getI();
+ for (int j=0; j<getJ(); j++) {
+ int t = targetOf(j,minTSpan(j));
+ while (t>=0) {
+ stream << " " << j << "-" << t;
+ t = targetOf(j,t+1);
+ }
+ }
+ stream << " TargetSpan:";
+ for (int j=0; j<getJ(); j++)
+ if (minTSpan(j)!=MINIMUM_INIT)
+ stream << " " << j << "[" << minTSpan(j) << "," << maxTSpan(j) << "]";
+ else
+ stream << " " << j << "[-,-]";
+ stream << " SourceSpan:";
+ for (int i=0; i<getI(); i++)
+ if (minSSpan(i)!=MINIMUM_INIT)
+ stream << " " << i << "[" << minSSpan(i) << "," << maxSSpan(i) << "]";
+ else
+ stream << " " << i << "[-,-]";
+ return stream.str();
+};
+
+void Alignment::SetCurrAlVector() {
+ curr_al.clear();
+ for (int j=0; j<_J; j++) {
+ int i = targetOf(j);
+ while (i>=0) {
+ curr_al.push_back(link(j,i));
+ i = targetOf(j,i+1);
+ }
+ }
+}
+
+const void CountTable::print() {
+ cerr << "+++ Model +++" << endl;
+ for (map<WordID,int*>::const_iterator iter=model.begin(); iter!=model.end(); iter++) {
+ cerr << TD::Convert(iter->first) << " ";
+ for (int i=0; i<numColumn; i++) cerr << iter->second[i] << " ";
+ cerr << endl;
+ }
+ cerr << "+++ Ultimate +++" << endl;
+ for (int i=0; i<numColumn; i++) cerr << ultimate[i] << " ";
+ cerr << endl;
+}
+
+void Alignment::ToArrayInt(vector<int>* ret) {
+ ret->clear();
+ for (int i=0; i<_J; i++) {
+ int t = targetOf(i);
+ while (t>=0) {
+ ret->push_back(link(i,t));
+ t = targetOf(i,t+1);
+ }
+ }
+}
+
+int Alignment::GetFWGlobalIdx(int idx, const Lattice& sourcelattice, vector<WordID>& sources, int spanstart, int spanend, const std::vector<const void*>& ant_contexts, const map<WordID,int>& sfw) {
+ // get the index of the function word in the lattice
+ if (DEBUG) cerr << " GetFWGlobalIdx(" << idx << "," << spanstart << "," << spanend << ")" << endl;
+ int curr = spanstart; int i_ant = 0;
+ for (int i=1; i<sources.size() && i<idx; i++) { // sources contain <s> and </s>
+ if (sources[i]<0) {
+ const int* ants = reinterpret_cast<const int *>(ant_contexts[i_ant++]);
+ int antstate = ants[Dwarf::STATE_SIZE-1];
+ if (DEBUG) cerr << " found NT[" << target(antstate) << "," << source(antstate) << "]" << endl;
+ curr += target(antstate)-source(antstate);
+ } else {
+ curr++;
+ }
+ }
+ if (DEBUG) cerr << " curr = " << curr << endl;
+ //compute the fw index
+ int ret = 1;
+ for (int i=0; i<curr; i++) {
+ if (sfw.find(sourcelattice[i][0].label)!=sfw.end()) ret++;
+ }
+ if (DEBUG) cerr << " ret = " << ret << endl;
+ return ret;
+}
+
+int Alignment::GetFirstFWIdx(int spanstart,int spanend, const Lattice& sourcelattice, const map<WordID,int>& sfw) {
+ if (DEBUG) cerr << " GetFirstFWIdx(" << spanstart << "," << spanend << ")" << endl;
+ int curr=0;
+ for (int i=0; i<spanend; i++) {
+ if (sfw.find(sourcelattice[i][0].label)!=sfw.end()) {
+ curr++;
+ if (i>=spanstart) return curr;
+ }
+ }
+// assert(0);
+ return curr;
+}
+
+int Alignment::GetLastFWIdx(int spanstart,int spanend, const Lattice& sourcelattice, const map<WordID,int>& sfw) {
+ if (DEBUG) cerr << " GetLastFWIdx(" << spanstart << "," << spanend << ")" << endl;
+ int curr=0;
+ for (int i=0; i<spanend; i++) {
+ if (sfw.find(sourcelattice[i][0].label)!=sfw.end()) {
+ curr++;
+ }
+ }
+ return curr;
+}
+
+WordID Alignment::generalize(WordID original, const map<WordID,WordID>& tags, bool pos) {
+ if (!pos) {
+ map<WordID,WordID>::const_iterator it = tags.find(original);
+ if (it!=tags.end()) {
+ return it->second;
+ }
+ } else {
+ string key,idx;
+ Dwarf::stripIndex(TD::Convert(original),&key,&idx);
+ map<WordID,WordID>::const_iterator it = tags.find(TD::Convert(key));
+ if (it!=tags.end()) {
+ ostringstream oss;
+ oss << TD::Convert(it->second) << "/" << idx;
+ return TD::Convert(oss.str());
+ }
+ }
+ return original;
+}
+
+int* Alignment::SOS() {
+ int* neighbor = new int[4];
+ neighbor[0]=0; neighbor[1]=0;
+ neighbor[2]=0; neighbor[3]=0;
+ return neighbor;
+}
+
+int* Alignment::EOS() {
+ int* neighbor = new int[4];
+ neighbor[0]=getJ()-1; neighbor[1]=neighbor[0];
+ neighbor[2]=getI()-1; neighbor[3]=neighbor[2];
+ return neighbor;
+}
+
+int* Alignment::neighborLeft(int startidx, int endidx, bool* getit) {
+ if (DEBUG) cerr << " neighborLeft("<<startidx<<","<<endidx<<")"<<endl;
+ int lborder = startidx;
+ int* ret;
+ while(lborder<=endidx) {
+ ret = blockSource(lborder,endidx);
+ if (ret[0]==lborder && ret[1]==endidx && ret[2]!=MINIMUM_INIT) {
+ *getit = true;
+ return ret;
+ } else {
+ delete[] ret;
+ lborder++;
+ }
+ }
+ ret = new int[4];
+ ret[0]=-1; ret[1]=-1; ret[2]=-1; ret[3]=-1;
+ *getit = false;
+ return ret;
+}
+
+int* Alignment:: neighborRight(int startidx, int endidx, bool* getit) {
+ if (DEBUG) cerr << " neighborRight("<<startidx<<","<<endidx<<")"<<endl;
+ int rborder = endidx;
+ int* ret;
+ while(startidx<=rborder) {
+ ret = blockSource(startidx,rborder);
+ if (ret[0]==startidx && ret[1]==rborder && ret[2]!=MINIMUM_INIT) {
+ *getit = true;
+ return ret;
+ } else {
+ delete[] ret;
+ rborder--;
+ }
+ }
+ ret = new int[4];
+ ret[0]=-1; ret[1]=-1; ret[2]=-1; ret[3]=-1;
+ *getit = false;
+ return ret;
+}
diff --git a/decoder/dwarf.h b/decoder/dwarf.h
new file mode 100644
index 00000000..83a0cae9
--- /dev/null
+++ b/decoder/dwarf.h
@@ -0,0 +1,286 @@
+#ifndef DWARF_H
+#define DWARF_H
+
+#include <cstdlib>
+#include <vector>
+#include <map>
+#include <string>
+#include <ostream>
+#include "wordid.h"
+#include "lattice.h"
+#include "trule.h"
+#include "tdict.h"
+#include <boost/functional/hash.hpp>
+#include <tr1/unordered_map>
+#include <boost/tuple/tuple.hpp>
+
+using namespace std;
+using namespace std::tr1;
+using namespace boost::tuples;
+using namespace boost;
+
+const static bool DEBUG = false;
+
+class CountTable {
+public:
+ int* ultimate;
+ map<WordID,int*> model;
+ int mode;
+ int numColumn;
+ const void print();
+ void setup(int _numcolumn, int _mode) {
+ mode = _mode; numColumn = _numcolumn;
+ }
+};
+
+class Alignment {
+/* Alignment represents an alignment object in a 2D format to support function word-based models calculation
+
+ A note about model's parameter estimation:
+ ==========================================
+ The model is estimated as a two-level Dirichlet process.
+ For orientation model, the first tier estimation is:
+ P(o|f,e) where *o* is the orientation value to estimate, *f* is the source function word aligned to *e*
+ its second tier is: P(o|f), while its third tier is P(o)
+ For dominance model, the first tier estimation is:
+ P(d|f1,f2,e1,e2) where *d* is a dominance value to estimate, *f1,f2* are the neighboring function words on the source
+ aligned to *e1,e2* on the target side
+ its second tier is: P(d|f1,f2) while its third tier is P(d)
+
+ Taking orientation model as a case in point, a two level estimation proceeds as follow:
+ P(o|f,e) = c(o,f,e) + alpha { c(o,f) + beta [ c (o) / c(.) ] }
+ ------------------------------
+ c(f) + beta
+ -------------------------------------------------
+ c(f,e) + alpha
+ where c() is a count function, alpha and beta are the concentration parameter
+ of the first and second Dirichlet process respectively
+ To encourage or penalize the use of second and third tier statistics, bo1 and bo2 binary features are introduced
+*/
+public:
+ const static int MAX_WORDS = 200;
+ const static int MINIMUM_INIT = 1000;
+ const static int MAXIMUM_INIT = -1000;
+ const static int MAX_ARITY = 2;
+ WordID kSOS;
+ WordID kEOS;
+ WordID kUNK;
+ double alpha_oris; // 1st concentration parameter for orientation model
+ double beta_oris; // 2nd concentration parameter for orientation model
+ double alpha_orit; // 1st concentration parameter for orientation model
+ double beta_orit; // 2nd concentration parameter for orientation model
+ double alpha_doms; // idem as above but for dominance model
+ double beta_doms;
+ double alpha_domt; // idem as above but for dominance model
+ double beta_domt;
+
+ // ACCESS to alignment
+ void set(int j,int i); // j is the source index, while i is the target index
+ void reset(int j,int i); // idem as above
+ inline bool at(int j, int i) { return _matrix[j][i]; };
+ inline int getJ() {return _J;}; // max source of the current alignment
+ inline int getI() {return _I;}; // max target of the current alignment
+ inline void setI(int I) { _I = I; };
+ inline void setJ(int J) { _J = J; };
+ inline void setF(vector<WordID> f) { _f=f;};
+ inline void setE(vector<WordID> e) { _e=e;};
+ inline WordID getF(int id) { if (id<0) return TD::Convert("<s>"); if (id>=_f.size()) return TD::Convert("</s>"); return _f[id];};
+ inline WordID getE(int id) { if (id<0) return TD::Convert("<s>"); if (id>=_e.size()) return TD::Convert("</s>"); return _e[id];};
+ void clearAls(int prevJ=200, int prevI=200);
+ int sourceOf(int i, int start = -1);
+ int targetOf(int j, int start = -1);
+ inline int minSSpan(int i) { return _sSpan[i][0];}
+ inline int maxSSpan(int i) { return _sSpan[i][1];}
+ inline int minTSpan(int j) { return _tSpan[j][0];}
+ inline int maxTSpan(int j) { return _tSpan[j][1];}
+ static inline int link(int s, int t) { return (s << 16) | t; }
+ static inline int source(int st) {return st >> 16; }
+ static inline int target(int st) {return st & 0xffff; }
+ inline void setAlphaOris(double val) { alpha_oris=val; }
+ inline void setAlphaOrit(double val) { alpha_orit=val; }
+ inline void setAlphaDoms(double val) { alpha_doms=val; }
+ inline void setAlphaDomt(double val) { alpha_domt=val; }
+ inline void setBetaOris(double val) { beta_oris=val; }
+ inline void setBetaOrit(double val) { beta_orit=val; }
+ inline void setBetaDoms(double val) { beta_doms=val; }
+ inline void setBetaDomt(double val) { beta_domt=val; }
+ inline void setFreqCutoff(int val) { cout << _freq_cutoff << " to " << val << endl; _freq_cutoff=val; }
+ string AsString();
+ string AsStringSimple();
+ int* SOS();
+ int* EOS();
+
+ // Model related function
+ Alignment();
+ // Given the current *rule* and its antecedents, construct an alignment space and mark the function word alignments
+ // according *sfw* and *tfw*
+ bool prepare(TRule& rule, const std::vector<const void*>& ant_contexts,
+ const map<WordID,int>& sfw, const map<WordID,int>& tfw, const Lattice& sourcelattice, int spanstart, int spanend);
+
+ // Compute orientation model score which parameters are stored in *table* and pass the values accordingly
+ // will call Orientation(Source|Target) and ScoreOrientation(Source|Target)
+ void computeOrientationSource(const CountTable& table, double *cost, double *bonus, double *bo1,
+ double *bo1_bonus, double *bo2, double *bo2_bonus);
+ void computeOrientationSourcePos(const CountTable& table, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2);
+ void computeOrientationSourceGen(const CountTable& table, double *cost, double *bonus, double *bo1,
+ double *bo1_bonus, double *bo2, double *bo2_bonus, const map<WordID,WordID>& tags);
+ void computeOrientationSourceBackward(const CountTable& table, double *cost, double *bonus, double *bo1,
+ double *bo1_bonus, double *bo2, double *bo2_bonus);
+ void computeOrientationSourceBackwardPos(const CountTable& table, double *cost, double *bonus, double *bo1,
+ double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2);
+ void computeOrientationTarget(const CountTable& table, double *cost, double *bonus, double *bo1,
+ double *bo1_bonus, double *bo2, double *bo2_bonus);
+ void computeOrientationTargetBackward(const CountTable& table, double *cost, double *bonus, double *bo1,
+ double *bo1_bonus, double *bo2, double *bo2_bonus);
+ // Get the orientation value of a function word at a particular index *fw*
+ // assign the value to either *oril* or *orir* accoring to *Lcompute* and *Rcompute*
+ void OrientationSource(int fw, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
+ void OrientationSource(int fw0, int fw1, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
+ int OrientationSource(int* left, int* right);
+ void OrientationTarget(int fw, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
+ void OrientationTarget(int fw0, int fw1, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
+
+ vector<int> OrientationSourceLeft4Sampler(int fw0, int fw1);
+ vector<int> OrientationSourceLeft4Sampler(int fw);
+ vector<int> OrientationSourceRight4Sampler(int fw0, int fw1);
+ vector<int> OrientationSourceRight4Sampler(int fw);
+ vector<int> OrientationTargetLeft4Sampler(int fw0, int fw1);
+ vector<int> OrientationTargetLeft4Sampler(int fw);
+ vector<int> OrientationTargetRight4Sampler(int fw0, int fw1);
+ vector<int> OrientationTargetRight4Sampler(int fw);
+
+ // Given an orientation value *ori*, estimate the score accoding to *cond1*, *cond2*
+ // and assign the value accordingly according to *isBonus* and whether the first or the second tier estimation
+ // is used or not
+ void ScoreOrientationRight(const CountTable& table, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
+ double *bo2, double *bo2_bonus, double alpha1, double beta1);
+ void ScoreOrientationLeft(const CountTable& table, int ori, WordID cond1, WordID cond,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
+ double *bo2, double *bo2_bonus, double alpha1, double beta1);
+ double ScoreOrientationRight(const CountTable& table, int ori, WordID cond1, WordID cond2);
+ double ScoreOrientationLeft(const CountTable& table, int ori, WordID cond1, WordID cond);
+ void ScoreOrientationRightBackward(const CountTable& table, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
+ double *bo2, double *bo2_bonus, double alpha1, double beta1);
+ void ScoreOrientationLeftBackward(const CountTable& table, int ori, WordID cond1, WordID cond,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
+ double *bo2, double *bo2_bonus, double alpha1, double beta1);
+ double ScoreOrientationRightBackward(const CountTable& table, int ori, WordID cond1, WordID cond2);
+ double ScoreOrientationLeftBackward(const CountTable& table, int ori, WordID cond1, WordID cond);
+ void ScoreOrientation(const CountTable& table, int offset, int ori, WordID cond1, WordID cond2,
+ bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
+ double *bo2, double *bo2_bonus, double alpha1, double beta1);
+ double ScoreOrientation(const CountTable& table, int offset, int ori, WordID cond1, WordID cond2);
+
+ // idem as above except these are for dominance model
+ void computeDominanceSource(const CountTable& table, WordID lfw, WordID rfw, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus);
+ void computeDominanceSourcePos(const CountTable& table, WordID lfw, WordID rfw, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2);
+ void computeDominanceTarget(const CountTable& table, WordID lfw, WordID rfw, double *cost, double *bonus,
+ double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus);
+ void computeBorderDominanceSource(const CountTable& table, double *cost, double *bonus,
+ double *state_mono, double *state_nonmono,
+ TRule &rule, const std::vector<const void*>& ant_contexts, const map<WordID,int>& sfw);
+ int DominanceSource(int fw1, int fw2);
+ int DominanceTarget(int fw1, int fw2);
+ vector<int> DominanceSource4Sampler(int fw1, int fw2);
+ vector<int> DominanceTarget4Sampler(int fw1, int fw2);
+ void ScoreDominance(const CountTable& table, int dom, WordID s1, WordID s2, WordID t1, WordID t2,
+ double *cost, double *bo1, double *bo2, bool isBonus, double alpha2, double beta2);
+ double ScoreDominance(const CountTable& table, int dom, WordID s1, WordID s2, WordID t1, WordID t2);
+
+ // Remove all function word alignments except those at the borders
+ // May result in more than two function word alignments at each side, because this function
+ // will continue keeping function word alignments until the first aligned word at each side
+ void BorderingSFWsOnly();
+ void BorderingTFWsOnly();
+ void simplify(int *ret); // preparing the next state
+ void simplify_nofw(int *ret); // preparing the next state when no function word appears
+ // set the first part of the next state, which concerns with function word
+ // fas, las, fat, lat is the (f)irst or (l)ast function word alignments either on the (s)ource or (t)arget
+ // these parameters to anticipate cases where there are more than two function word alignments
+ void FillFWIdxsState(int *state, int fas, int las, int fat, int lat);
+
+ // Helper function to obtain the aligned words on the other side
+ // WARNING!!! Only to be used if the als are in sync with either source or target sentences
+ WordID F2EProjectionFromExternal(int idx, const vector<AlignmentPoint>& als, const string& delimiter=" ");
+ WordID E2FProjectionFromExternal(int idx, const vector<AlignmentPoint>& als, const string& delimiter=" ");
+ // WARNING!!! Only to be used in dwarf_main.cc
+ // These two function words assume that the alignment contains phrase boundary
+ // but the source and target sentences do not
+ WordID F2EProjection(int idx, const string& delimiter=" ");
+ WordID E2FProjection(int idx, const string& delimiter=" ");
+ void SetCurrAlVector();
+ int* blockSource(int fw1, int fw2);
+ int* blockTarget(int fw1, int fw2);
+ void ToArrayInt(vector<int>* arr);
+ int* neighborLeft(int startidx, int endidx, bool* found);
+ int* neighborRight(int startidx, int endidx, bool* found);
+private:
+ // Hash to avoid redundancy
+ unordered_map<vector<int>, int, boost::hash<vector<int> > > oris_hash;
+ unordered_map<vector<int>, int, boost::hash<vector<int> > > orit_hash;
+ unordered_map<vector<int>, int, boost::hash<vector<int> > > doms_hash;
+ unordered_map<vector<int>, int, boost::hash<vector<int> > > domt_hash;
+ unordered_map<vector<int>, vector<int>, boost::hash<vector<int> > > simplify_hash;
+ unordered_map<vector<int>, vector<int>, boost::hash<vector<int> > > prepare_hash;
+
+ int _J; // effective source length;
+ int _I; // effective target length;
+ bool _matrix[MAX_WORDS][MAX_WORDS]; // true if aligned
+ short _sSpan[MAX_WORDS][2]; //the source span of a target index; 0->min, 1->max
+ short _tSpan[MAX_WORDS][2]; //the target span of a source index; 0->min, 2->max
+ int _freq_cutoff;
+ int SourceFWRuleIdxs[40]; //the indexes of function words in the rule;
+ // The following applies to all *FW*Idxs
+ // *FW*Idxs[0] = size
+ // *FW*Idxs[idx*3-2] = index in the alignment, where idx starts from 1 to size
+ // *FW*Idxs[idx*3-1] = source WordID
+ // *FW*Idxs[idx*3] = target WordID
+ int SourceFWRuleAbsIdxs[40];
+ int TargetFWRuleIdxs[40]; //the indexes of function words in the rule; zeroth element is the count
+ int ** SourceFWAntsIdxs; //the indexes of function words in antecedents
+ int ** SourceFWAntsAbsIdxs;
+ int ** TargetFWAntsIdxs; //the indexes of function words in antecedents
+ int SourceRuleIdxs[40]; //the indexes of SOURCE tokens (zeroth element is the number of source tokens)
+ //>0 means terminal, -i means the i-th Xs
+ int TargetRuleIdxs[40]; //the indexes of TARGET tokens (zeroth element is the number of target tokens)
+ int ** SourceAntsIdxs; //the array of indexes of a particular antecedent's SOURCE tokens
+ int ** TargetAntsIdxs; //the array of indexes of a particular antecedent's TARGET tokens
+ int SourceFWIdxs[40];
+ int SourceFWAbsIdxs[40];
+ int TargetFWIdxs[40];
+ // *sort* and *quickSort* are used to sort *FW*Idxs
+ void sort(int* num);
+ void quickSort(int arr[], int top, int bottom);
+
+ // *block(Source|Target)* finds the minimum block that containts two indexes (fw1 and fw2)
+ inline int least(int i1, int i2) { return (i1<i2)?i1:i2; }
+ inline int most(int i1, int i2) { return (i1>i2)?i1:i2; }
+ void simplifyBackward(vector<int *>*blocks, int* block, const vector<int>& danglings);
+ // used in simplify to check whether an atomic block according to source function words is also atomic according
+ // to target function words as well, otherwise break it
+ // the resulting blocks are added into *blocks*
+ int _Arity;
+ std::vector<WordID> _f; // the source sentence of the **current** rule (may not consistent with the current alignment)
+ std::vector<WordID> _e; // the target sentence of the **current** rule
+ int RuleAl[40];
+ int **AntsAl;
+ int firstSourceAligned(int start);
+ int firstTargetAligned(int start);
+ int lastSourceAligned(int end);
+ int lastTargetAligned(int end);
+ int fas, las, fat, lat; // first aligned source, last aligned source, first aligned target, last aligned target
+ bool MemberOf(int* FWIdxs, int pos1, int pos2); // whether FWIdxs contains pos1 and pos2 consecutively
+ // Convert the alignment to vector form, will be used for hashing purposes
+ vector<int> curr_al;
+ int GetFWGlobalIdx(int idx, const Lattice& sourcelattice, vector<WordID>& sources, int spanstart, int spanend, const std::vector<const void*>& ant_contexts, const map<WordID,int>& sfw);
+ int GetFirstFWIdx(int spanstart,int spanend, const Lattice& sourcelattice, const map<WordID,int>& sfw);
+ int GetLastFWIdx(int spanstart,int spanend, const Lattice& sourcelattice, const map<WordID,int>& sfw);
+ WordID generalize(WordID original, const map<WordID,WordID>& tags, bool pos=false);
+};
+
+#endif
diff --git a/decoder/ff_dwarf.cc b/decoder/ff_dwarf.cc
new file mode 100644
index 00000000..3daa85ac
--- /dev/null
+++ b/decoder/ff_dwarf.cc
@@ -0,0 +1,893 @@
+#include <vector>
+#include <sstream>
+#include <fstream>
+#include <string>
+#include <iostream>
+#include <map>
+#include "ff_dwarf.h"
+#include "dwarf.h"
+#include "wordid.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "sentence_metadata.h"
+#include "stringlib.h"
+
+using namespace std;
+
+Dwarf::Dwarf(const std::string& param) {
+/* Param is a space separated string which contains any or all of the following:
+ oris|orit|doms|domt=filename
+ e.g. oris=/fs/clip-galep3eval/hendra/z2e/oris128.gz
+*/
+ sSOS="<s>";
+ sEOS="</s>";
+ kSOS=TD::Convert(sSOS);
+ kEOS=TD::Convert(sEOS);
+ kGOAL=TD::Convert("S")*-1;
+ _sent_id = (int *)malloc(sizeof(int));
+ *_sent_id = -1;
+ if (DEBUG) cerr << "here = " << *_sent_id << endl;
+ _fwcount = (int *)malloc(sizeof(int));
+ *_fwcount = -1;
+ cerr << "initializing dwarf" << endl;
+ flag_oris=false; flag_orit=false; flag_doms=false; flag_domt=false; flag_tfw_count=false;
+ flag_bdoms=false; flag_porislr=false, flag_porisrl=false, flag_goris=false; flag_pgorislr=false, flag_pgorisrl=false;
+ flag_pdomslr=false; flag_pdomsrl=false; flag_pgdomslr=false; flag_pgdomsrl=false; flag_gdoms=false;
+ flag_oris_backward=false; flag_orit_backward=false;
+ explicit_soseos=false;
+ SetStateSize(STATE_SIZE*sizeof(int));
+ als = new Alignment();
+ als->clearAls(Alignment::MAX_WORDS,Alignment::MAX_WORDS);
+ istringstream iss(param); string w;
+ while(iss >> w) {
+ int equal = w.find_first_of("=");
+ if (equal!=string::npos) {
+ string model = w.substr(0,equal);
+ vector<string> params;
+ Tokenize(w.substr(equal+1),',',&params);
+ string fn = params[0];
+ if (model == "minfreq") {
+ cerr << "model minfreq " << fn << endl;
+ als->setFreqCutoff(atoi(fn.c_str()));
+ } else if (model == "oris") {
+ flag_oris = readOrientation(&toris,fn,&sfw);
+ if (flag_oris) {
+ oris_ = FD::Convert("OrientationSource");
+ //oris_bo1_ = FD::Convert("OrientationSource_BO1");
+ //oris_bo2_ = FD::Convert("OrientationSource_BO2");
+ }
+ if (params.size()>1) als->setAlphaOris(atof(params[1].c_str()));
+ if (params.size()>2) als->setBetaOris(atof(params[2].c_str()));
+ } else if (model == "porislr") {
+ flag_porislr = readOrientation(&tporislr,fn,&sfw,true);
+ poris_nlr = 0;
+ if (flag_porislr) {
+ porislr_ = FD::Convert("OrientationSourcePositionfulLeftRight");
+ }
+ if (params.size()>1) poris_nlr = atoi(params[1].c_str());
+ if (DEBUG) cerr << " maximum poris depth=" << poris_nlr << endl;
+ } else if (model == "porisrl") {
+ flag_porisrl = readOrientation(&tporisrl,fn,&sfw,true);
+ poris_nrl = 0;
+ if (flag_porisrl) {
+ porisrl_ = FD::Convert("OrientationSourcePositionfulRightLeft");
+ }
+ if (params.size()>1) poris_nrl = atoi(params[1].c_str());
+ if (DEBUG) cerr << " maximum poris depth=" << poris_nrl << endl;
+ } else if (model=="goris") {
+ flag_goris = readOrientation(&tgoris,fn,&sfw);
+ if (flag_goris) {
+ goris_ = FD::Convert("OrientationSourceGeneralized");
+ }
+ if (params.size()>1) {
+ readTags(params[1],&tags);
+ generalizeOrientation(&tgoris,tags);
+ }
+ } else if (model=="pgorislr") {
+ flag_pgorislr = readOrientation(&tpgorislr,fn,&sfw,true);
+ pgoris_nlr = 0;
+ if (flag_pgorislr) {
+ pgorislr_ = FD::Convert("OrientationSourceGeneralizedPositionfulLeftRight");
+ }
+ if (DEBUG) {
+ cerr << "BEFORE GENERALIZATION" << endl;
+ tpgorislr.print();
+ }
+ if (params.size()>1) pgoris_nlr = atoi(params[1].c_str());
+ if (params.size()>2) {
+ readTags(params[2],&tags);
+ generalizeOrientation(&tpgorislr,tags,true);
+ }
+ if (DEBUG) {
+ cerr << "AFTER GENERALIZATION" << endl;
+ tpgorislr.print();
+ }
+ } else if (model=="pgorisrl") {
+ flag_pgorisrl = readOrientation(&tpgorisrl,fn,&sfw,true);
+ pgoris_nrl = 0;
+ if (flag_pgorisrl) {
+ pgorisrl_ = FD::Convert("OrientationSourceGeneralizedPositionfulLeftRight");
+ }
+ if (params.size()>1) pgoris_nrl = atoi(params[1].c_str());
+ if (params.size()>2) {
+ readTags(params[2],&tags);
+ generalizeOrientation(&tpgorisrl,tags,true);
+ }
+ } else if (model == "oris_backward") {
+ flag_oris_backward = true;
+ if (!flag_oris) readOrientation(&toris,fn,&sfw);
+ oris_backward_ = FD::Convert("OrientationSourceBackward");
+ if (params.size()>1) als->setAlphaOris(atof(params[1].c_str()));
+ if (params.size()>2) als->setBetaOris(atof(params[2].c_str()));
+ } else if (model == "orit") {
+ flag_orit = readOrientation(&torit,fn,&tfw);
+ if (flag_orit) {
+ orit_ = FD::Convert("OrientationTarget");
+ //orit_bo1_ = FD::Convert("OrientationTarget_BO1");
+ //orit_bo2_ = FD::Convert("OrientationTarget_BO2");
+ }
+ if (params.size()>1) als->setAlphaOrit(atof(params[1].c_str()));
+ if (params.size()>2) als->setBetaOrit(atof(params[2].c_str()));
+ } else if (model == "orit_backward") {
+ flag_orit_backward = true;
+ if (!flag_orit) readOrientation(&torit,fn,&tfw);
+ orit_backward_ = FD::Convert("OrientationTargetBackward");
+ if (params.size()>1) als->setAlphaOrit(atof(params[1].c_str()));
+ if (params.size()>2) als->setBetaOrit(atof(params[2].c_str()));
+ } else if (model == "doms") {
+ flag_doms = readDominance(&tdoms,fn,&sfw);
+ if (flag_doms) {
+ doms_ = FD::Convert("DominanceSource");
+ //doms_bo1_ = FD::Convert("DominanceSource_BO1");
+ //doms_bo2_ = FD::Convert("DominanceSource_BO2");
+ }
+ if (params.size()>1) als->setAlphaDoms(atof(params[1].c_str()));
+ if (params.size()>2) als->setBetaDoms(atof(params[2].c_str()));
+ } else if (model == "pdomsrl") {
+ flag_pdomsrl = readDominance(&tpdomsrl,fn,&sfw,true);
+ if (flag_pdomsrl) {
+ pdomsrl_ = FD::Convert("DominanceSourcePositionfulRightLeft");
+ }
+ if (params.size()>1) pdoms_nrl = atoi(params[1].c_str());
+ } else if (model == "pdomslr") {
+ flag_pdomslr = readDominance(&tpdomslr,fn,&sfw,true);
+ tpdomslr.print();
+ if (flag_pdomslr) {
+ pdomslr_ = FD::Convert("DominanceSourcePositionfulLeftRight");
+ }
+ if (params.size()>1) pdoms_nlr = atoi(params[1].c_str());
+ } else if (model == "pgdomsrl") {
+ flag_pgdomsrl = readDominance(&tpgdomsrl,fn,&sfw,true);
+ if (flag_pgdomsrl) {
+ pgdomsrl_ = FD::Convert("DominanceSourceGeneralizedPositionfulRightLeft");
+ }
+ if (params.size()>1) pgdoms_nrl = atoi(params[1].c_str());
+ if (params.size()>2) {
+ readTags(params[2],&tags);
+ generalizeDominance(&tpgdomsrl,tags,true);
+ }
+ } else if (model == "pgdomslr") {
+ flag_pgdomslr = readDominance(&tpgdomslr,fn,&sfw,true);
+ if (flag_pgdomslr) {
+ pgdomslr_ = FD::Convert("DominanceSourceGeneralizedPositionfulLeftRight");
+ }
+ if (params.size()>1) pgdoms_nlr = atoi(params[1].c_str());
+ if (params.size()>2) {
+ readTags(params[2],&tags);
+ if (DEBUG) {
+ for (map<WordID,WordID>::const_iterator it=tags.begin(); it!=tags.end(); it++) {
+ cerr << "tags = " << TD::Convert(it->first) << ", " << TD::Convert(it->second) << endl;
+ }
+ }
+ generalizeDominance(&tpgdomslr,tags,true);
+ }
+ if (DEBUG) tpgdomslr.print();
+ } else if (model == "bdoms") {
+ flag_bdoms = readDominance(&tbdoms,fn,&sfw);
+ if (flag_bdoms) {
+ bdoms_ = FD::Convert("BorderDominanceSource");
+ }
+ } else if (model == "domt") {
+ flag_domt = readDominance(&tdomt,fn,&tfw);
+ if (flag_domt) {
+ domt_ = FD::Convert("DominanceTarget");
+ //domt_bo1_ = FD::Convert("DominanceTarget_BO1");
+ //domt_bo2_ = FD::Convert("DominanceTarget_BO2");
+ }
+ if (params.size()>1) als->setAlphaDomt(atof(params[1].c_str()));
+ if (params.size()>2) als->setBetaDomt(atof(params[2].c_str()));
+ } else if (model== "tfw_count") {
+ flag_tfw_count = readList(fn,&tfw);
+ tfw_count_ = FD::Convert("TargetFunctionWordsCount");
+ } else {
+ cerr << "DWARF doesn't understand this model: " << model << endl;
+ }
+ } else {
+ if (w=="tfw_count") {
+ flag_tfw_count = true;
+ tfw_count_ = FD::Convert("TargetFunctionWordsCount");
+ } else if (w=="oris_backward") {
+ flag_oris_backward = true;
+ oris_backward_ = FD::Convert("OrientationSourceBackward");
+ } else if (w=="orit_backward") {
+ flag_orit_backward = true;
+ orit_backward_ = FD::Convert("OrientationTargetBackward");
+ } else if (w=="explicit_soseos") {
+ explicit_soseos=true;
+ } else {
+ cerr << "DWARF doesn't need this param: " << param << endl;
+ }
+ }
+ }
+ for (map<WordID,int>::const_iterator it=sfw.begin(); it!=sfw.end() && DEBUG; it++) {
+ cerr << " FW:" << TD::Convert(it->first) << endl;
+ }
+}
+
+void Dwarf::TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const {
+ if (DEBUG) cerr << "TraversalFeaturesImpl" << endl;
+ double cost, bonus, bo1, bo2, bo1_bonus, bo2_bonus;
+ double bdoms_state_mono= 0; double bdoms_state_nonmono = 0;
+ TRule r = *edge.rule_;
+ if (DEBUG) cerr << " sent_id=" << *_sent_id << ", " << smeta.GetSentenceID() << endl;
+ if (DEBUG) cerr << "rule = " << r.AsString() << endl;
+ if (DEBUG) cerr << "rule[i,j] = " << edge.i_ << "," << edge.j_ << endl;
+ if (*_sent_id != smeta.GetSentenceID()) { //new sentence
+ *_sent_id = smeta.GetSentenceID();
+ const Lattice l = smeta.GetSourceLattice();
+ *_fwcount=0;
+ for (int i=0; i<smeta.GetSourceLength(); i++) {
+ if (sfw.find(l[i][0].label)!=sfw.end()) {
+ *_fwcount+=1;
+ }
+ }
+ if (DEBUG) cerr << "new sentence[" << *_sent_id << "]="<<*_fwcount<<endl;
+ }
+ bool nofw = als->prepare(*edge.rule_, ant_contexts, sfw, tfw,smeta.GetSourceLattice(),edge.i_,edge.j_);
+ bool isFinal = (edge.i_==0 && edge.j_==smeta.GetSourceLength() && r.GetLHS()==kGOAL);
+ // prepare *nofw* outputs whether the resulting alignment, contains function words or not
+ // if not, the models do not have to be calcualted and *simplify* is very simple
+ if (DEBUG) cerr << "nofw = " << nofw << endl;
+ if (flag_tfw_count) {
+ double count = 0;
+ for (int i=0; i<r.e_.size(); i++) {
+ if (tfw.find(r.e_[i])!=tfw.end()) count++;
+ }
+ features->set_value(tfw_count_,count);
+ }
+ if (flag_oris) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw) als->computeOrientationSource(toris,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(oris_,cost);
+ //features->set_value(oris_bo1_,bo1);
+ //features->set_value(oris_bo2_,bo2);
+ estimated_features->set_value(oris_,bonus);
+ //estimated_features->set_value(oris_bo1_,bo1_bonus);
+ //estimated_features->set_value(oris_bo2_,bo2_bonus);
+ }
+ if (flag_porislr) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw)
+ als->computeOrientationSourcePos(tporislr,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,poris_nlr,0);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(porislr_,cost);
+ estimated_features->set_value(porislr_,bonus);
+ }
+ if (flag_porisrl) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw)
+ als->computeOrientationSourcePos(tporisrl,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,0,poris_nrl);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(porisrl_,cost);
+ estimated_features->set_value(porisrl_,bonus);
+ }
+ if (flag_pgorislr) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw)
+ als->computeOrientationSourcePos(tpgorislr,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,pgoris_nlr,0);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(pgorislr_,cost);
+ estimated_features->set_value(pgorislr_,bonus);
+ }
+ if (flag_pgorisrl) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw)
+ als->computeOrientationSourcePos(tpgorisrl,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,0,pgoris_nrl);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(pgorisrl_,cost);
+ estimated_features->set_value(pgorisrl_,bonus);
+ }
+ if (flag_goris) {
+ cost=0; bonus=0;
+ if (!nofw) als->computeOrientationSource(tgoris,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(goris_,cost);
+ estimated_features->set_value(goris_,bonus);
+ }
+ if (flag_oris_backward) {
+ cost=0; bonus=0;
+ if (!nofw)
+ als->computeOrientationSourceBackward(toris,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(oris_backward_,cost);
+ estimated_features->set_value(oris_backward_,bonus);
+ }
+ WordID _lfw = kSOS;
+ WordID _rfw = kEOS;
+ if (flag_doms || flag_pdomslr || flag_pdomsrl || flag_pgdomslr || flag_pgdomsrl) {
+ if (DEBUG) cerr << " seeking lfw and rfw" << endl;
+ int start = edge.i_;
+ int end = edge.j_;
+ if (DEBUG) cerr << " start=" << start << ", end=" << end << endl;
+ const Lattice l = smeta.GetSourceLattice();
+ for (int idx=start-1; idx>=0; idx--) {
+ if (DEBUG) cerr << " checking idx=" << idx << ", label=" << l[idx][0].label << "-" << TD::Convert(l[idx][0].label) << endl;
+ if (sfw.find(l[idx][0].label) !=sfw.end()) {
+ if (DEBUG) cerr << "+";
+ _lfw=l[idx][0].label; break;
+ }
+ }
+ for (int idx=end; idx<l.size(); idx++) { // end or end+1
+ if (DEBUG) cerr << " checking idx=" << idx << ", label=" << l[idx][0].label << "-" << TD::Convert(l[idx][0].label) << endl;
+ if (sfw.find(l[idx][0].label)!=sfw.end()) {
+ if (DEBUG) cerr << ".";
+ _rfw=l[idx][0].label; break;
+ }
+ }
+ if (isFinal&&!explicit_soseos) {
+ _lfw=kSOS; _rfw=kEOS;
+ }
+ }
+ if (flag_doms) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw) als->computeDominanceSource(tdoms,_lfw,_rfw,&cost,&bonus,
+ &bo1,&bo1_bonus,&bo2,&bo2_bonus);
+ if (DEBUG) cerr << " COST=" << cost << ", BONUS=" << bonus << endl;
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ if (DEBUG) cerr << " final and !explicit_soseos, thus cost = " << cost << endl;
+ bonus = 0;
+ }
+ features->set_value(doms_,cost);
+ estimated_features->set_value(doms_,bonus);
+ }
+ if (flag_pdomslr) {
+ if (DEBUG) cerr << " flag_pdomslr true, nofw=" << nofw << endl;
+ if (DEBUG) cerr << " lfw=" << _lfw << ", rfw=" << _rfw << endl;
+ if (DEBUG) cerr << " kSOS=" << kSOS << ", kEOS=" << kEOS << endl;
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw) als->computeDominanceSourcePos(tpdomslr,_lfw,_rfw,&cost,&bonus,
+ &bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,pdoms_nlr,0);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(pdomslr_,cost);
+ estimated_features->set_value(pdomslr_,bonus);
+ }
+ if (flag_pdomsrl) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw) als->computeDominanceSourcePos(tpdomsrl,_lfw,_rfw,&cost,&bonus,
+ &bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,0,pdoms_nrl);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(pdomsrl_,cost);
+ estimated_features->set_value(pdomsrl_,bonus);
+ }
+ if (flag_pgdomslr) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw) als->computeDominanceSourcePos(tpgdomslr,_lfw,_rfw,&cost,&bonus,
+ &bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,pgdoms_nlr,0);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(pgdomslr_,cost);
+ estimated_features->set_value(pgdomslr_,bonus);
+ }
+ if (flag_pgdomsrl) { cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw) als->computeDominanceSourcePos(tpgdomsrl,_lfw,_rfw,&cost,&bonus,
+ &bo1,&bo1_bonus,&bo2,&bo2_bonus,*_fwcount,0,pgdoms_nrl);
+ if (isFinal&&!explicit_soseos) {
+ cost += bonus;
+ bonus = 0;
+ }
+ features->set_value(pgdomsrl_,cost);
+ estimated_features->set_value(pgdomsrl_,bonus);
+ }
+
+
+ if (flag_bdoms) {
+ cost=0; bonus=0; bdoms_state_mono=0; bdoms_state_nonmono=0;
+ if (!nofw)
+ als->computeBorderDominanceSource(tbdoms,&cost,&bonus,
+ &bdoms_state_mono, &bdoms_state_nonmono,*edge.rule_, ant_contexts, sfw);
+ features->set_value(bdoms_,cost);
+ estimated_features->set_value(bdoms_,bonus);
+ }
+ if (flag_orit) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ if (!nofw) als->computeOrientationTarget(torit,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus);
+ if (DEBUG) cerr << "cost=" << cost << ", bonus=" << bonus << ", bo1=" << bo1 << ", bo1_bonus=" << bo1_bonus << ", bo2=" << bo2 << ", bo2_bonus=" << bo2_bonus << endl;
+ features->set_value(orit_,cost);
+ //features->set_value(orit_bo1_,bo1);
+ //features->set_value(orit_bo2_,bo2);
+ estimated_features->set_value(orit_,bonus);
+ //estimated_features->set_value(orit_bo1_,bo1_bonus);
+ //estimated_features->set_value(orit_bo2_,bo2_bonus);
+ }
+ if (flag_orit_backward) {
+ cost=0; bonus=0;
+ if (!nofw) als->computeOrientationTargetBackward(torit,&cost,&bonus,&bo1,&bo1_bonus,&bo2,&bo2_bonus);
+ features->set_value(orit_backward_,cost);
+ estimated_features->set_value(orit_backward_,bonus);
+ }
+ if (flag_domt) {
+ cost=0; bonus=0; bo1=0; bo2=0; bo1_bonus=0; bo2_bonus=0;
+ WordID _lfw=-1; int start = edge.i_;
+ WordID _rfw=-1; int end = edge.j_;
+ if (smeta.HasReference()) {
+ const Lattice l = smeta.GetReference();
+ for (int idx=start-1; idx>=0; idx--) {
+ if (l.size()>0)
+ if (tfw.find(l[idx][0].label) !=tfw.end()) {
+ _lfw=l[idx][0].label; break;
+ }
+ }
+ for (int idx=end; idx<l.size(); idx++) { // end or end+1
+ if (l[idx].size()>0)
+ if (tfw.find(l[idx][0].label)!=tfw.end()) {
+ _rfw=l[idx][0].label; break;
+ }
+ }
+ }
+ //neighboringFWs(smeta.GetReference(),edge.i_,edge.j_,tfw,&_lfw,&_rfw);
+ if (!nofw) als->computeDominanceTarget(tdomt,_lfw,_rfw,&cost,&bonus,
+ &bo1,&bo1_bonus,&bo2,&bo2_bonus);
+ features->set_value(domt_,cost);
+ //features->set_value(domt_bo1_,bo1);
+ //features->set_value(domt_bo2_,bo2);
+ estimated_features->set_value(domt_,bonus);
+ //estimated_features->set_value(domt_bo1_,bo1_bonus);
+ //estimated_features->set_value(domt_bo2_,bo2_bonus);
+ }
+ int* vcontext = reinterpret_cast<int *>(context);
+ if (!nofw) {
+ als->BorderingSFWsOnly();
+ als->BorderingTFWsOnly();
+ als->simplify(vcontext);
+ } else {
+ als->simplify_nofw(vcontext);
+ }
+ vcontext[50] = DoubleToInteger(bdoms_state_mono);
+ vcontext[51] = DoubleToInteger(bdoms_state_nonmono);
+ vcontext[STATE_SIZE-1] = Alignment::link(edge.i_,edge.j_);
+ if (DEBUG) {
+ cerr << "state@traverse = ";
+ for (int idx=0; idx<STATE_SIZE; idx++) cerr << idx << "." << vcontext[idx] << " ";
+ cerr << endl;
+ cerr << "bdoms_state_mono=" << bdoms_state_mono << ", state[50]=" << IntegerToDouble(vcontext[50]) << endl;
+ cerr << "bdoms_state_nonmono=" << bdoms_state_nonmono << ", state[51]=" << IntegerToDouble(vcontext[51]) << endl;
+ }
+}
+
+int Dwarf::DoubleToInteger(double val) {
+ float x = (float)val;
+ float* px = &x;
+ int* pix = reinterpret_cast<int *>(px);
+ return *pix;
+}
+
+double Dwarf::IntegerToDouble(int val) {
+ int *py = &val;
+ float* pd = reinterpret_cast<float *>(py);
+ return (double)*pd;
+}
+
+void Dwarf::neighboringFWs(const Lattice& l, const int& i, const int& j, const map<WordID,int>& fw_hash, int* lfw, int* rfw) {
+ *lfw=0; *rfw=0;
+ int idx=i-l[i][0].dist2next;
+ while (idx>=0) {
+ if (l[idx].size()>0) {
+ if (fw_hash.find(l[idx][0].label)!=fw_hash.end()) {
+ *lfw++;
+ }
+ }
+ idx-=l[idx][0].dist2next;
+ }
+ idx=j+l[j][0].dist2next;
+ while (idx<l.size()) {
+ if (l[idx].size()>0) {
+ if (fw_hash.find(l[idx][0].label)!=fw_hash.end()) {
+ *rfw++;
+ }
+ }
+ idx+=l[idx][0].dist2next;
+ }
+}
+
+bool Dwarf::readOrientation(CountTable* table, const std::string& filename, std::map<WordID,int> *fw, bool pos) {
+ // the input format is
+ // source target 0 1 2 3 4 0 1 2 3 4
+ // 0 -> MA, 1 -> RA, 2 -> MG, 3 -> RG, 4 -> NO_NEIGHBOR
+ // first 01234 corresponds to the left neighbor, the second 01234 corresponds to the right neighbor
+ // append 2 more at the end as precomputed total
+
+ // TONS of hack here. CountTable should be wrapped as a class
+ // TODO: check whether the file exists or not, return false if not
+ if (DEBUG) cerr << " readOrientation(" << filename << ", pos=" << pos << ")" << endl;
+ ReadFile rf(filename);
+ istream& in = *rf.stream();
+ table->setup(24,pos);
+ table->ultimate = new int[24];
+ for (int i=0; i<24; i++) table->ultimate[i]=0;
+ ostringstream oss;
+ while (in) {
+ string line;
+ getline(in,line);
+ if (line=="") break;
+ istringstream tokenizer(line);
+ string sourceidx, source, target, word;
+ tokenizer >> source >> target;
+ if (pos) {
+ sourceidx = source;
+ source = sourceidx.substr(0,sourceidx.find_last_of("/"));
+ }
+ if (fw->find(TD::Convert(source))==fw->end()) fw->insert(pair<WordID,int>(TD::Convert(source),1));
+
+
+ int* element = new int[24];
+ element[5] = 0;
+ for (int i=0; i<5; i++) {
+ element[i] = 0;
+ if (tokenizer >> word) element[i] = atoi(word.c_str());
+ element[5] += element[i];
+ }
+ element[11] = 0;
+ for (int i=6; i<11; i++) {
+ element[i] = 0;
+ if (tokenizer >> word) element[i] = atoi(word.c_str());
+ element[11] += element[i];
+ }
+ element[17] = 0;
+ for (int i=12; i<17; i++) {
+ element[i] = 0;
+ if (tokenizer >> word) element[i] = atoi(word.c_str());
+ element[17] += element[i];
+ }
+ element[23] = 0;
+ for (int i=18; i<23; i++) {
+ element[i] = 0;
+ if (tokenizer >> word) element[i] = atoi(word.c_str());
+ element[23] += element[i];
+ }
+ for (int i=0; i<24; i++) table->ultimate[i] += element[i];
+ oss << source << " " << target;
+ WordID key_id = TD::Convert(oss.str());
+ oss.str("");
+ if (table->model.find(key_id)!=table->model.end()) {
+ for (int i=0; i<24; i++) table->model[key_id][i]+=element[i];
+ } else {
+ int* el2 = new int[24];
+ for (int i=0; i<24; i++) el2[i] = element[i];
+ table->model.insert(pair<WordID,int*>(key_id,el2));
+ }
+
+ oss << source;
+ key_id = TD::Convert(oss.str());
+ oss.str("");
+ if (table->model.find(key_id)!=table->model.end()) {
+ for (int i=0; i<24; i++) table->model[key_id][i]+=element[i];
+ } else {
+ int* el2 = new int[24];
+ for (int i=0; i<24; i++) el2[i] = element[i];
+ table->model.insert(pair<WordID,int*>(key_id,el2));
+ }
+
+ if (pos) {
+ oss << sourceidx << " " << target;
+ key_id = TD::Convert(oss.str());
+ oss.str("");
+ if (table->model.find(key_id)!=table->model.end()) {
+ for (int i=0; i<24; i++) table->model[key_id][i]+=element[i];
+ } else {
+ int* el2 = new int[24];
+ for (int i=0; i<24; i++) el2[i] = element[i];
+ table->model.insert(pair<WordID,int*>(key_id,el2));
+ }
+ }
+ delete[] element;
+ }
+ return true;
+}
+
+bool Dwarf::readList(const std::string& filename, std::map<WordID,int>* fw) {
+ ReadFile rf(filename);
+ istream& in = *rf.stream();
+ while (in) {
+ string word;
+ getline(in,word);
+ if (fw->find(TD::Convert(word))==fw->end()) fw->insert(pair<WordID,int>(TD::Convert(word),1));
+ }
+ return true;
+}
+
+bool Dwarf::readDominance(CountTable* table, const std::string& filename, std::map<WordID,int>* fw, bool pos) {
+ // the input format is
+ // source1 source2 target1 target2 0 1 2 3
+ // 0 -> dontcase 1->leftfirst 2->rightfirst 3->neither
+ if (DEBUG) cerr << "readDominance(" << filename << ",pos="<< pos << ")" << endl;
+ ReadFile rf(filename);
+ istream& in = *rf.stream();
+ table->ultimate = new int[5];
+ table->setup(5,pos);
+ for (int i=0; i<5; i++) table->ultimate[i]=0;
+ while (in) {
+ string line, word;
+ getline(in,line);
+ if (line=="") break;
+ string source1idx, source2idx, target1, target2, source1, source2;
+ ostringstream oss;
+ WordID key_id;
+ istringstream tokenizer(line);
+ tokenizer >> source1 >> source2 >> target1 >> target2;
+ if (pos) {
+ source1idx = source1;
+ source2idx = source2;
+ source1 = source1idx.substr(0,source1idx.find_last_of("/"));
+ source2 = source2idx.substr(0,source2idx.find_last_of("/"));
+ }
+ if (fw->find(TD::Convert(source1))==fw->end()) fw->insert(pair<WordID,int>(TD::Convert(source1),1));
+ if (fw->find(TD::Convert(source2))==fw->end()) fw->insert(pair<WordID,int>(TD::Convert(source2),1));
+
+ int* element = new int[5];
+ element[4]=0;
+ for (int i=0; i<4; i++) {
+ element[i] = 0;
+ if (tokenizer >> word) element[i] = atoi(word.c_str());
+ element[4]+=element[i];
+ }
+ for (int i=0; i<5; i++) table->ultimate[i] += element[i];
+
+ oss << source1 << " " << source2 << " " << target1 << " " << target2;
+ key_id = TD::Convert(oss.str());
+ oss.str("");
+ if (table->model.find(key_id)!=table->model.end()) {
+ for (int i=0; i<5; i++) table->model[key_id][i]+=element[i];
+ } else {
+ int* el2 = new int[5];
+ for (int i=0; i<5; i++) el2[i]=element[i];
+ table->model.insert(pair<WordID,int*>(key_id,el2));
+ }
+
+ oss << source1 << " " << source2;
+ key_id = TD::Convert(oss.str());
+ oss.str("");
+ if (table->model.find(key_id)!=table->model.end()) {
+ for (int i=0; i<5; i++) table->model[key_id][i]+=element[i];
+ } else {
+ int* el2 = new int[5];
+ for (int i=0; i<5; i++) el2[i]=element[i];
+ table->model.insert(pair<WordID,int*>(key_id,el2));
+ }
+
+ if (pos) {
+ oss << source1idx << " " << source2idx << " " << target1 << " " << target2;
+ key_id = TD::Convert(oss.str());
+ oss.str("");
+ if (table->model.find(key_id)!=table->model.end()) {
+ for (int i=0; i<5; i++) table->model[key_id][i]+=element[i];
+ } else {
+ int* el2 = new int[5];
+ for (int i=0; i<5; i++) el2[i]=element[i];
+ table->model.insert(pair<WordID,int*>(key_id,el2));
+ }
+ }
+ delete element;
+ }
+
+ return true;
+}
+
+bool Dwarf::readTags(const std::string& filename, std::map<WordID,WordID>* tags) {
+ ReadFile rf(filename);
+ istream& in = *rf.stream();
+ while(in) {
+ string line, word, tag;
+ getline(in,line);
+ if (line=="") break;
+ istringstream tokenizer(line);
+ tokenizer >> tag >> word;
+ tags->insert(pair<WordID,WordID>(TD::Convert(word),TD::Convert(tag)));
+ }
+ return true;
+}
+
+bool Dwarf::generalizeOrientation(CountTable* table, const std::map<WordID,WordID>& tags, bool pos) {
+ map<string,int*> generalized;
+ for (map<WordID,int*>::iterator it=table->model.begin(); it!=table->model.end(); it++) {
+ string source, target;
+ istringstream tokenizer(TD::Convert(it->first));
+ tokenizer >> source >> target;
+ string idx = "";
+ if (pos) {
+ int found = source.find_last_of("/");
+ if (found!=string::npos && found>0) {
+ idx = source.substr(found+1);
+ source = source.substr(0,found);
+ }
+ }
+ map<WordID,WordID>::const_iterator tags_iter = tags.find(TD::Convert(source));
+ if (tags_iter!=tags.end()) {
+ ostringstream genkey;
+ genkey << TD::Convert(tags_iter->second);
+ if (idx!="") genkey << "/" << idx;
+ if (target!="") genkey << " " << target;
+ int* model;
+ if (generalized.find(genkey.str())!=generalized.end()) {
+ model = generalized[genkey.str()];
+ for (int i=0; i<24; i++) model[i] += it->second[i];
+ } else {
+ int* el = new int[24];
+ for (int i=0; i<24; i++) el[i] = it->second[i];
+ generalized.insert(pair<string,int*>(genkey.str(),el));
+ }
+ }
+ }
+ for (map<WordID,int*>::iterator it=table->model.begin(); it!=table->model.end(); it++) {
+ string source, target;
+ istringstream tokenizer(TD::Convert(it->first));
+ tokenizer >> source >> target;
+ string idx = "";
+ if (pos) {
+ int found = source.find_last_of("/");
+ if (found!=string::npos && found>0) {
+ idx = source.substr(found+1);
+ source = source.substr(0,found);
+ }
+ }
+ map<WordID,WordID>::const_iterator tags_iter = tags.find(TD::Convert(source));
+ if (tags_iter!=tags.end()) {
+ ostringstream genkey;
+ genkey << TD::Convert(tags_iter->second);
+ if (idx!="") genkey << "/" << idx;
+ if (target!="") genkey << " " << target;
+ if (generalized.find(genkey.str())!=generalized.end()) {
+ delete it->second;
+ it->second = generalized[genkey.str()];
+ }
+ }
+ }
+
+}
+
+
+
+bool Dwarf::generalizeDominance(CountTable* table, const std::map<WordID,WordID>& tags, bool pos) {
+ map<string,int*> generalized;
+ ostringstream oss;
+ for (map<WordID,int*>::iterator it=table->model.begin(); it!=table->model.end(); it++) {
+ string source1, source2, target1, target2;
+ string idx1 = ""; string idx2 = "";
+ istringstream tokenizer(TD::Convert(it->first));
+ tokenizer >> source1 >> source2 >> target1 >> target2;
+ if (DEBUG) cerr << "source1=|" << source1 << "|, source2=|" << source2 << "|, target1=|" << target1 << "|, target2=|" << target2 << "|" << endl;
+ if (pos) {
+ int found1 = source1.find_last_of("/");
+ int found2 = source2.find_last_of("/");
+ if (found1!=string::npos && found2!=string::npos && found1>0 && found2>0) {
+ idx1 = source1.substr(found1+1);
+ source1 = source1.substr(0,found1);
+ idx2 = source2.substr(found2+1);
+ source2 = source2.substr(0,found2);
+ }
+ }
+ if (DEBUG)
+ cerr << "[U]source1='" << source1 << "', idx1='"<< idx1 << "', source2='" << source2 << "', idx2='"<< idx2 << "', target1='" << target1 << "', target2='" << target2 << "'" << endl;
+ map<WordID,WordID>::const_iterator tags_iter1 = tags.find(TD::Convert(source1));
+ map<WordID,WordID>::const_iterator tags_iter2 = tags.find(TD::Convert(source2));
+ if (tags_iter1!=tags.end())
+ source1 = TD::Convert(tags_iter1->second);
+ oss << source1;
+ if (idx1!="") oss << "/" << idx1;
+ if (tags_iter2!=tags.end())
+ source2 = TD::Convert(tags_iter2->second);
+ oss << " " << source2;
+ if (idx2!="") oss << "/" << idx2;
+ if (target1!="" && target2!="") oss << " " << target1 << " " << target2;
+
+ if (DEBUG) cerr << "generalized key = '" << oss.str() << "'" << endl;
+ if (generalized.find(oss.str())!=generalized.end()) {
+ int* model = generalized[oss.str()];
+ for (int i=0; i<5; i++) model[i] += it->second[i];
+ } else {
+ int* model = new int[5];
+ for (int i=0; i<5; i++) model[i] = it->second[i];
+ generalized.insert(pair<string,int*>(oss.str(),model));
+ }
+ oss.str("");
+ }
+
+ if (DEBUG) {
+ for (map<string,int*>::const_iterator it=generalized.begin(); it!=generalized.end(); it++) {
+ cerr << "GENERALIZED = " << it->first << ", ";
+ for (int i=0; i<5; i++) cerr << it->second[i] << " ";
+ cerr << endl;
+ }
+ }
+
+ for (map<WordID,int*>::iterator it=table->model.begin(); it!=table->model.end(); it++) {
+ string source1, source2, target1, target2;
+ string idx1 = ""; string idx2 = "";
+ istringstream tokenizer(TD::Convert(it->first));
+ tokenizer >> source1 >> source2 >> target1 >> target2;
+ if (pos) {
+ int found1 = source1.find_last_of("/");
+ int found2 = source2.find_last_of("/");
+ if (found1!=string::npos && found2!=string::npos && found1>0 && found2>0) {
+ idx1 = source1.substr(found1+1);
+ source1 = source1.substr(0,found1);
+ idx2 = source2.substr(found2+1);
+ source2 = source2.substr(0,found2);
+ }
+ }
+ map<WordID,WordID>::const_iterator tags_iter1 = tags.find(TD::Convert(source1));
+ map<WordID,WordID>::const_iterator tags_iter2 = tags.find(TD::Convert(source2));
+ if (tags_iter1!=tags.end())
+ source1 = TD::Convert(tags_iter1->second);
+ oss << source1;
+ if (idx1!="") oss << "/" << idx1;
+ if (tags_iter2!=tags.end())
+ source2 = TD::Convert(tags_iter2->second);
+ oss << " " << source2;
+ if (idx2!="") oss << "/" << idx2;
+ if (target1!="" && target2!="") oss << " " << target1 << " " << target2;
+
+ if (generalized.find(oss.str())!=generalized.end()) {
+ if (DEBUG) cerr << " generalizing "<< TD::Convert(it->first) << " into " << oss.str() << endl;
+ if (DEBUG) {
+ cerr << " model from ";
+ for (int i=0; i<5; i++) cerr << it->second[i] << " ";
+ cerr << endl;
+ }
+ delete it->second;
+ it->second = generalized[oss.str()];
+ if (DEBUG) {
+ cerr << " into ";
+ for (int i=0; i<5; i++) cerr << it->second[i] << " ";
+ cerr << endl;
+ }
+ }
+ oss.str("");
+ }
+
+}
diff --git a/decoder/ff_dwarf.h b/decoder/ff_dwarf.h
new file mode 100644
index 00000000..083fcc7c
--- /dev/null
+++ b/decoder/ff_dwarf.h
@@ -0,0 +1,100 @@
+#include <vector>
+#include <map>
+#include <string>
+#include "ff.h"
+#include "dwarf.h"
+#include "lattice.h"
+
+using namespace std;
+
+class Dwarf : public FeatureFunction {
+ public:
+ Dwarf(const std::string& param);
+ /* State-related param
+ STATE_SIZE: the number of ints
+ MAXIMUM_ALIGNMENTS: the maximum number of alignments in the states,
+ each alignment point is encoded in one int
+ (the first two bytes for source, and the remaining one for target)
+ */
+ static const int STATE_SIZE=53;
+ static const int IMPOSSIBLY_LARGE_POS = 9999999;
+ static const int MAXIMUM_ALIGNMENTS=37;
+ /* Read from file the Orientation(Source|Target model parameter. */
+ static bool readOrientation(CountTable* table, const std::string& filename, std::map<WordID,int> *fw, bool pos=false);
+ /* Read from file the Dominance(Source|Target) model parameter. */
+ static bool readDominance(CountTable* table, const std::string& filename, std::map<WordID,int> *fw, bool pos=false);
+ static bool readList(const std::string& filename, std::map<WordID,int>* fw);
+ static double IntegerToDouble(int val);
+ static int DoubleToInteger(double val);
+ bool readTags(const std::string& filename, std::map<WordID,WordID>* tags);
+ bool generalizeOrientation(CountTable* table, const std::map<WordID,WordID>& tags, bool pos=false);
+ bool generalizeDominance(CountTable* table, const std::map<WordID,WordID>& tags, bool pos=false);
+ static void stripIndex(const string& source, string* pkey, string* pidx) {
+ if (DEBUG) cerr << " stripIndex(" << source << ")" << endl;
+ int found = source.find_last_of("/");
+ string idx = source.substr(found+1);
+ string key = source.substr(0,found);
+ if (DEBUG) cerr << " found=" << found << "," << key << "," << idx << endl;
+ pkey = &key;
+ pidx = &idx;
+ }
+
+
+ protected:
+ /* The high-level workflow is as follow:
+ 1. call *als->prepare*, which constructs the full alignment of the edge while taking into account the antecedents
+ also in this call, function words are identified. Most of the work in this call is to make sure the indexes
+ of the alignments (including the function words) are consistent with the newly created alignment
+ 2. call *als->computeOrientationSource*, *als->computeOrientationTarget*,
+ *als->computeDominanceSource*, or *als->computeDominanceTarget*
+ and pass the resulting score to either *features* or to *estimated_features*
+ 3. call *als->BorderingSFWsOnly()* and *als->BorderingTFWsOnly()*, which removes records of all function word
+ alignments except those at the borders. Note that fw alignments kept may be more than two on each side
+ for examples if there are a number of unaligned fw alignments before the leftmost alignment or the rightmost one
+ 4. call *als->simplify()*, which assigns the state of this edge (*context*). It simplifies the alignment space to
+ its most compact representation, enough to compute the unscored models. This is done by observing the surviving
+ function word alignments set by 3.
+ */
+ void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const;
+ private:
+ Alignment* als;
+ /* Feature IDs set by calling FD::Convert(model's string) */
+ int oris_, oris_bo1_, oris_bo2_, orit_, orit_bo1_, orit_bo2_;
+ int oris_backward_, orit_backward_, porislr_, porisrl_, goris_, pgorislr_, pgorisrl_;
+ int pdomslr_, pdomsrl_, pgdomslr_, pgdomsrl_;
+ int doms_, doms_bo1_, doms_bo2_, domt_, domt_bo1_, domt_bo2_;
+ int tfw_count_;
+ int bdoms_;
+ int poris_count;
+ int pgoris_count;
+ int poris_nlr, poris_nrl; // maximum depth (1->from the beginning of the sentence, 2-> from the end of the sentence)
+ int pgoris_nlr, pgoris_nrl;
+ int pdoms_nlr, pdoms_nrl;
+ int pgdoms_nlr, pgdoms_nrl;
+ int* _sent_id;
+ int* _fwcount;
+ WordID kSOS;
+ WordID kEOS;
+ string sSOS;
+ string sEOS;
+ WordID kGOAL;
+ /* model's flag, if set true will invoke the model scoring */
+ bool flag_oris, flag_orit, flag_doms, flag_domt, flag_tfw_count, flag_oris_backward, flag_orit_backward, flag_bdoms;
+ bool flag_porislr, flag_porisrl, flag_goris, flag_pgorislr, flag_pgorisrl;
+ bool explicit_soseos;
+ bool flag_pdomslr, flag_pdomsrl, flag_pgdomslr, flag_pgdomsrl, flag_gdoms;
+ /* a collection of Source function words (sfw) and Target function words (tfw) */
+ std::map<WordID,int> sfw;
+ std::map<WordID,int> tfw;
+ std::map<WordID,WordID> tags;
+ /* a collection of model's parameter */
+ CountTable toris, torit, tdoms, tbdoms, tdomt, tporislr, tporisrl, tgoris, tpgorislr, tpgorisrl;
+ CountTable tpdomslr, tpdomsrl, tpgdomslr, tpgdomsrl;
+ void neighboringFWs(const Lattice& l, const int& i, const int& j, const map<WordID,int>& fw_hash, int* lfw, int* rfw);
+};
+
diff --git a/decoder/grammar.cc b/decoder/grammar.cc
index 7e6bbc66..9e4065a6 100644
--- a/decoder/grammar.cc
+++ b/decoder/grammar.cc
@@ -157,6 +157,7 @@ PassThroughGrammar::PassThroughGrammar(const Lattice& input, const string& cat,
has_rule_[i].insert(j);
const string& src = TD::Convert(alts[k].label);
TRulePtr pt(new TRule("[" + cat + "] ||| " + src + " ||| " + src + " ||| PassThrough=1"));
+ pt->a_.push_back(AlignmentPoint(0,0));
AddRule(pt);
RefineRule(pt, ctf_level);
}
diff --git a/decoder/rule_lexer.l b/decoder/rule_lexer.l
index 2e5d3bf5..383dd336 100644
--- a/decoder/rule_lexer.l
+++ b/decoder/rule_lexer.l
@@ -46,11 +46,15 @@ int scfglex_num_feats;
#define MAX_ARITY 20
int scfglex_nt_sanity[MAX_ARITY];
int scfglex_src_nts[MAX_ARITY];
-float scfglex_nt_size_means[MAX_ARITY];
-float scfglex_nt_size_vars[MAX_ARITY];
+// float scfglex_nt_size_means[MAX_ARITY];
+// float scfglex_nt_size_vars[MAX_ARITY];
std::stack<TRulePtr> ctf_rule_stack;
unsigned int ctf_level = 0;
+#define MAX_ALS 50
+AlignmentPoint scfglex_als[MAX_ALS];
+int scfglex_num_als;
+
void sanity_check_trg_symbol(WordID nt, int index) {
if (scfglex_src_nts[index-1] != nt) {
std::cerr << "Target symbol with index " << index << " is of type " << TD::Convert(nt*-1)
@@ -79,6 +83,7 @@ void scfglex_reset() {
scfglex_num_feats = 0;
scfglex_src_rhs_size = 0;
scfglex_trg_rhs_size = 0;
+ scfglex_num_als = 0;
}
void check_and_update_ctf_stack(const TRulePtr& rp) {
@@ -215,7 +220,7 @@ NT [^\t \[\],]+
std::cerr << "Line " << lex_line << ": LHS and RHS arity mismatch!\n";
abort();
}
- TRulePtr rp(new TRule(scfglex_lhs, scfglex_src_rhs, scfglex_src_rhs_size, scfglex_trg_rhs, scfglex_trg_rhs_size, scfglex_feat_ids, scfglex_feat_vals, scfglex_num_feats, scfglex_src_arity));
+ TRulePtr rp(new TRule(scfglex_lhs, scfglex_src_rhs, scfglex_src_rhs_size, scfglex_trg_rhs, scfglex_trg_rhs_size, scfglex_feat_ids, scfglex_feat_vals, scfglex_num_feats, scfglex_src_arity, scfglex_als, scfglex_num_als));
check_and_update_ctf_stack(rp);
TRulePtr coarse_rp = ((ctf_level == 0) ? TRulePtr() : ctf_rule_stack.top());
rule_callback(rp, ctf_level, coarse_rp, rule_callback_extra);
@@ -280,7 +285,7 @@ NT [^\t \[\],]+
b += yytext[i] - '0';
++i;
}
- // TODO store alignment points somewhere
+ scfglex_als[scfglex_num_als++]=AlignmentPoint(a,b);
}
<ALIGNS>[ \t] ;
<ALIGNS>. {
diff --git a/decoder/trule.h b/decoder/trule.h
index acdbc5cf..6bffc277 100644
--- a/decoder/trule.h
+++ b/decoder/trule.h
@@ -4,6 +4,7 @@
#include <algorithm>
#include <vector>
#include <cassert>
+#include <iostream>
#include <boost/shared_ptr.hpp>
#include "sparse_vector.h"
@@ -12,18 +13,27 @@
class TRule;
typedef boost::shared_ptr<TRule> TRulePtr;
-struct NTSizeSummaryStatistics {
- NTSizeSummaryStatistics(int arity) : means(arity), vars(arity) {}
- std::vector<float> means;
- std::vector<float> vars;
+struct AlignmentPoint {
+ AlignmentPoint() : s_(), t_() {}
+ AlignmentPoint(int s, int t) : s_(s), t_(t) {}
+ AlignmentPoint Inverted() const {
+ return AlignmentPoint(t_, s_);
+ }
+ short s_;
+ short t_;
};
+inline std::ostream& operator<<(std::ostream& os, const AlignmentPoint& p) {
+ return os << '(' << static_cast<int>(p.s_) << '-' << static_cast<int>(p.t_) << ')';
+}
+
// Translation rule
class TRule {
public:
TRule() : lhs_(0), prev_i(-1), prev_j(-1) { }
- TRule(WordID lhs, const WordID* src, int src_size, const WordID* trg, int trg_size, const int* feat_ids, const double* feat_vals, int feat_size, int arity) :
- e_(trg, trg + trg_size), f_(src, src + src_size), lhs_(lhs), arity_(arity), prev_i(-1), prev_j(-1) {
+ TRule(WordID lhs, const WordID* src, int src_size, const WordID* trg, int trg_size, const int* feat_ids, const double* feat_vals, int feat_size, int arity, const AlignmentPoint* als, int alsnum) :
+ e_(trg, trg + trg_size), f_(src, src + src_size), lhs_(lhs), arity_(arity), prev_i(-1), prev_j(-1),
+ a_(als, als + alsnum) {
for (int i = 0; i < feat_size; ++i)
scores_.set_value(feat_ids[i], feat_vals[i]);
}
@@ -113,6 +123,7 @@ class TRule {
const std::vector<WordID>& f() const { return f_; }
const std::vector<WordID>& e() const { return e_; }
+ const std::vector<AlignmentPoint>& als() const { return a_; }
int EWords() const { return ELength() - Arity(); }
int FWords() const { return FLength() - Arity(); }
@@ -141,8 +152,7 @@ class TRule {
short int prev_i;
short int prev_j;
- // may be null
- boost::shared_ptr<NTSizeSummaryStatistics> nt_size_summary_;
+ std::vector<AlignmentPoint> a_; // alignment points, may be empty
// only for coarse-to-fine decoding
boost::shared_ptr<std::vector<TRulePtr> > fine_rules_;