summaryrefslogtreecommitdiff
path: root/utils/unigram_pyp_lm.cc
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit3d8d656fa7911524e0e6885647173474524e0784 (patch)
tree81b1ee2fcb67980376d03f0aa48e42e53abff222 /utils/unigram_pyp_lm.cc
parentbe7f57fdd484e063775d7abf083b9fa4c403b610 (diff)
parent96fedabebafe7a38a6d5928be8fff767e411d705 (diff)
fixed conflicts
Diffstat (limited to 'utils/unigram_pyp_lm.cc')
-rw-r--r--utils/unigram_pyp_lm.cc214
1 files changed, 0 insertions, 214 deletions
diff --git a/utils/unigram_pyp_lm.cc b/utils/unigram_pyp_lm.cc
deleted file mode 100644
index 30b9fde1..00000000
--- a/utils/unigram_pyp_lm.cc
+++ /dev/null
@@ -1,214 +0,0 @@
-#include <iostream>
-#include <tr1/memory>
-#include <queue>
-
-#include <boost/functional.hpp>
-#include <boost/program_options.hpp>
-#include <boost/program_options/variables_map.hpp>
-
-#include "corpus_tools.h"
-#include "m.h"
-#include "tdict.h"
-#include "sampler.h"
-#include "ccrp.h"
-#include "gamma_poisson.h"
-
-// A not very memory-efficient implementation of an 1-gram LM based on PYPs
-// as described in Y.-W. Teh. (2006) A Hierarchical Bayesian Language Model
-// based on Pitman-Yor Processes. In Proc. ACL.
-
-using namespace std;
-using namespace tr1;
-namespace po = boost::program_options;
-
-boost::shared_ptr<MT19937> prng;
-
-void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
- po::options_description opts("Configuration options");
- opts.add_options()
- ("samples,n",po::value<unsigned>()->default_value(50),"Number of samples")
- ("train,i",po::value<string>(),"Training data file")
- ("test,T",po::value<string>(),"Test data file")
- ("discount_prior_a,a",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): a=this")
- ("discount_prior_b,b",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): b=this")
- ("strength_prior_s,s",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): s=this")
- ("strength_prior_r,r",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): r=this")
- ("random_seed,S",po::value<uint32_t>(), "Random seed");
- po::options_description clo("Command line options");
- clo.add_options()
- ("config", po::value<string>(), "Configuration file")
- ("help", "Print this help message and exit");
- po::options_description dconfig_options, dcmdline_options;
- dconfig_options.add(opts);
- dcmdline_options.add(opts).add(clo);
-
- po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- if (conf->count("config")) {
- ifstream config((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(config, dconfig_options), *conf);
- }
- po::notify(*conf);
-
- if (conf->count("help") || (conf->count("train") == 0)) {
- cerr << dcmdline_options << endl;
- exit(1);
- }
-}
-
-struct Histogram {
- void increment(unsigned bin, unsigned delta = 1u) {
- data[bin] += delta;
- }
- void decrement(unsigned bin, unsigned delta = 1u) {
- data[bin] -= delta;
- }
- void move(unsigned from_bin, unsigned to_bin, unsigned delta = 1u) {
- decrement(from_bin, delta);
- increment(to_bin, delta);
- }
- map<unsigned, unsigned> data;
- // SparseVector<unsigned> data;
-};
-
-// Lord Rothschild. 1986. THE DISTRIBUTION OF ENGLISH DICTIONARY WORD LENGTHS.
-// Journal of Statistical Planning and Inference 14 (1986) 311-322
-struct PoissonLengthUniformCharWordModel {
- explicit PoissonLengthUniformCharWordModel(unsigned vocab_size) : plen(5,5), uc(-log(50)), llh() {}
- void increment(WordID w, MT19937*) {
- llh += log(prob(w)); // this isn't quite right
- plen.increment(TD::Convert(w).size() - 1);
- }
- void decrement(WordID w, MT19937*) {
- plen.decrement(TD::Convert(w).size() - 1);
- llh -= log(prob(w)); // this isn't quite right
- }
- double prob(WordID w) const {
- size_t len = TD::Convert(w).size();
- return plen.prob(len - 1) * exp(uc * len);
- }
- double log_likelihood() const { return llh; }
- void resample_hyperparameters(MT19937*) {}
- GammaPoisson plen;
- const double uc;
- double llh;
-};
-
-// uniform base distribution (0-gram model)
-struct UniformWordModel {
- explicit UniformWordModel(unsigned vocab_size) : p0(1.0 / vocab_size), draws() {}
- void increment(WordID, MT19937*) { ++draws; }
- void decrement(WordID, MT19937*) { --draws; assert(draws >= 0); }
- double prob(WordID) const { return p0; } // all words have equal prob
- double log_likelihood() const { return draws * log(p0); }
- void resample_hyperparameters(MT19937*) {}
- const double p0;
- int draws;
-};
-
-// represents an Unigram LM
-template <class BaseGenerator>
-struct UnigramLM {
- UnigramLM(unsigned vs, double da, double db, double ss, double sr) :
- base(vs),
- crp(da, db, ss, sr, 0.8, 1.0) {}
- void increment(WordID w, MT19937* rng) {
- const double backoff = base.prob(w);
- if (crp.increment(w, backoff, rng))
- base.increment(w, rng);
- }
- void decrement(WordID w, MT19937* rng) {
- if (crp.decrement(w, rng))
- base.decrement(w, rng);
- }
- double prob(WordID w) const {
- const double backoff = base.prob(w);
- return crp.prob(w, backoff);
- }
-
- double log_likelihood() const {
- double llh = base.log_likelihood();
- llh += crp.log_crp_prob();
- return llh;
- }
-
- void resample_hyperparameters(MT19937* rng) {
- crp.resample_hyperparameters(rng);
- base.resample_hyperparameters(rng);
- }
-
- double discount_a, discount_b, strength_s, strength_r;
- double d, strength;
- BaseGenerator base;
- CCRP<WordID> crp;
-};
-
-int main(int argc, char** argv) {
- po::variables_map conf;
-
- InitCommandLine(argc, argv, &conf);
- const unsigned samples = conf["samples"].as<unsigned>();
- if (conf.count("random_seed"))
- prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
- else
- prng.reset(new MT19937);
- MT19937& rng = *prng;
- vector<vector<WordID> > corpuse;
- set<WordID> vocabe;
- const WordID kEOS = TD::Convert("</s>");
- cerr << "Reading corpus...\n";
- CorpusTools::ReadFromFile(conf["train"].as<string>(), &corpuse, &vocabe);
- cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
- vector<vector<WordID> > test;
- if (conf.count("test"))
- CorpusTools::ReadFromFile(conf["test"].as<string>(), &test);
- else
- test = corpuse;
-#if 1
- UnigramLM<PoissonLengthUniformCharWordModel> lm(vocabe.size(),
-#else
- UnigramLM<UniformWordModel> lm(vocabe.size(),
-#endif
- conf["discount_prior_a"].as<double>(),
- conf["discount_prior_b"].as<double>(),
- conf["strength_prior_s"].as<double>(),
- conf["strength_prior_r"].as<double>());
- for (unsigned SS=0; SS < samples; ++SS) {
- for (unsigned ci = 0; ci < corpuse.size(); ++ci) {
- const vector<WordID>& s = corpuse[ci];
- for (unsigned i = 0; i <= s.size(); ++i) {
- WordID w = (i < s.size() ? s[i] : kEOS);
- if (SS > 0) lm.decrement(w, &rng);
- lm.increment(w, &rng);
- }
- if (SS > 0) lm.decrement(kEOS, &rng);
- lm.increment(kEOS, &rng);
- }
- cerr << "LLH=" << lm.log_likelihood() << "\t tables=" << lm.crp.num_tables() << " " << endl;
- if (SS % 10 == 9) lm.resample_hyperparameters(&rng);
- }
- double llh = 0;
- unsigned cnt = 0;
- unsigned oovs = 0;
- for (unsigned ci = 0; ci < test.size(); ++ci) {
- const vector<WordID>& s = test[ci];
- for (unsigned i = 0; i <= s.size(); ++i) {
- WordID w = (i < s.size() ? s[i] : kEOS);
- double lp = log(lm.prob(w)) / log(2);
- if (i < s.size() && vocabe.count(w) == 0) {
- cerr << "**OOV ";
- ++oovs;
- //lp = 0;
- }
- cerr << "p(" << TD::Convert(w) << ") = " << lp << endl;
- llh -= lp;
- cnt++;
- }
- }
- cerr << " Log_10 prob: " << (-llh * log(2) / log(10)) << endl;
- cerr << " Count: " << cnt << endl;
- cerr << " OOVs: " << oovs << endl;
- cerr << "Cross-entropy: " << (llh / cnt) << endl;
- cerr << " Perplexity: " << pow(2, llh / cnt) << endl;
- return 0;
-}
-