summaryrefslogtreecommitdiff
path: root/training
diff options
context:
space:
mode:
authorPatrick Simianer <simianer@cl.uni-heidelberg.de>2013-10-08 13:57:45 +0200
committerPatrick Simianer <simianer@cl.uni-heidelberg.de>2013-10-08 13:57:45 +0200
commit8fae8c224fc7a8f8a858ed9a022992d020057f65 (patch)
tree295c876d6fa8c8cc6725ec6cd2a9f164fb78e232 /training
parent61ab9164cce065ee3cb4fc6c72d0b7246874d18c (diff)
dtrain: added pclr variants and new expected-output; fixed bug in soft syntax features
Diffstat (limited to 'training')
-rw-r--r--training/dtrain/dtrain.cc31
-rw-r--r--training/dtrain/examples/standard/dtrain.ini6
-rw-r--r--training/dtrain/examples/standard/expected-output115
-rwxr-xr-xtraining/dtrain/parallelize.rb11
4 files changed, 100 insertions, 63 deletions
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 9d60a903..38a9b69a 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -40,7 +40,7 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)
("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair")
("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near")
("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.")
- ("pclr", po::value<bool>()->zero_tokens(), "use a (simple) per-coordinate learning rate")
+ ("pclr", po::value<string>()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate")
("noup", po::value<bool>()->zero_tokens(), "do not update weights");
po::options_description cl("Command Line Options");
cl.add_options()
@@ -125,8 +125,7 @@ main(int argc, char** argv)
if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max();
bool scale_bleu_diff = false;
if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true;
- bool pclr = false;
- if (cfg.count("pclr")) pclr = true;
+ const string pclr = cfg["pclr"].as<string>();
bool average = false;
if (select_weights == "avg")
average = true;
@@ -190,7 +189,6 @@ main(int argc, char** argv)
weight_t gamma = cfg["gamma"].as<weight_t>();
// faster perceptron: consider only misranked pairs, see
- // DO NOT ENABLE WITH SVM (gamma > 0) OR loss_margin!
bool faster_perceptron = false;
if (gamma==0 && loss_margin==0) faster_perceptron = true;
@@ -251,8 +249,7 @@ main(int argc, char** argv)
cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl;
if (rescale)
cerr << setw(25) << "rescale " << rescale << endl;
- if (pclr)
- cerr << setw(25) << "pclr " << pclr << endl;
+ cerr << setw(25) << "pclr " << pclr << endl;
cerr << setw(25) << "max pairs " << max_pairs << endl;
cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
@@ -392,22 +389,30 @@ main(int argc, char** argv)
if (scale_bleu_diff) eta = it->first.score - it->second.score;
if (rank_error || margin < loss_margin) {
SparseVector<weight_t> diff_vec = it->first.f - it->second.f;
- if (pclr) {
+ if (pclr != "no") {
sum_up += diff_vec;
} else {
lambdas.plus_eq_v_times_s(diff_vec, eta);
+ if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); // FIXME
}
- if (gamma)
- lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
}
}
// per-coordinate learning rate
- if (pclr) {
+ if (pclr != "no") {
SparseVector<weight_t>::iterator it = sum_up.begin();
- for (; it != lambdas.end(); ++it) {
- learning_rates[it->first]++;
- lambdas[it->first] += it->second / learning_rates[it->first]; //* max(0.00000001, eta/(eta+learning_rates[it->first]));
+ for (; it != sum_up.end(); ++it) {
+ if (pclr == "simple") {
+ lambdas[it->first] += it->second / max(1.0, learning_rates[it->first]);
+ learning_rates[it->first]++;
+ } else if (pclr == "adagrad") {
+ if (learning_rates[it->first] == 0) {
+ lambdas[it->first] += it->second * eta;
+ } else {
+ lambdas[it->first] += it->second * eta * learning_rates[it->first];
+ }
+ learning_rates[it->first] += pow(it->second, 2.0);
+ }
}
}
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index c0912a62..e6d6382e 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -1,6 +1,6 @@
input=./nc-wmt11.de.gz
refs=./nc-wmt11.en.gz
-output=asdf # a weights file (add .gz for gzip compression) or STDOUT '-'
+output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
select_weights=VOID # output average (over epochs) weight vector
decoder_config=./cdec.ini # config for cdec
# weights for these features will be printed on each iteration
@@ -10,11 +10,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr
stop_after=10 # stop epoch after 10 inputs
# interesting stuff
-epochs=2 # run over input 2 times
+epochs=3 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx) BLEU4
scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
+learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
gamma=0 # use SVM reg
sample_from=kbest # use kbest lists (as opposed to forest)
filter=uniq # only unique entries in kbest (surface form)
diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output
index 21f91244..a35bbe6f 100644
--- a/training/dtrain/examples/standard/expected-output
+++ b/training/dtrain/examples/standard/expected-output
@@ -4,13 +4,13 @@ Reading ./nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
Example feature: Shape_S00000_T00000
-Seeding random number sequence to 970626287
+Seeding random number sequence to 4049211323
dtrain
Parameters:
k 100
N 4
- T 2
+ T 3
scorer 'fixed_stupid_bleu'
sample from 'kbest'
filter 'uniq'
@@ -23,6 +23,7 @@ Parameters:
pair threshold 0
select weights 'VOID'
l1 reg 0 'none'
+ pclr no
max pairs 4294967295
cdec cfg './cdec.ini'
input './nc-wmt11.de.gz'
@@ -30,62 +31,88 @@ Parameters:
output '-'
stop_after 10
(a dot represents 10 inputs)
-Iteration #1 of 2.
+Iteration #1 of 3.
. 10
Stopping after 10 input sentences.
WEIGHTS
- Glue = -614
- WordPenalty = +1256.8
- LanguageModel = +5610.5
- LanguageModel_OOV = -1449
- PhraseModel_0 = -2107
- PhraseModel_1 = -4666.1
- PhraseModel_2 = -2713.5
- PhraseModel_3 = +4204.3
- PhraseModel_4 = -1435.8
- PhraseModel_5 = +916
- PhraseModel_6 = +190
- PassThrough = -2527
+ Glue = -1100
+ WordPenalty = -82.082
+ LanguageModel = -3199.1
+ LanguageModel_OOV = -192
+ PhraseModel_0 = +3128.2
+ PhraseModel_1 = -1610.2
+ PhraseModel_2 = -4336.5
+ PhraseModel_3 = +2910.3
+ PhraseModel_4 = +2523.2
+ PhraseModel_5 = +506
+ PhraseModel_6 = +1467
+ PassThrough = -387
---
- 1best avg score: 0.17874 (+0.17874)
- 1best avg model score: 88399 (+88399)
- avg # pairs: 798.2 (meaningless)
- avg # rank err: 798.2
+ 1best avg score: 0.16966 (+0.16966)
+ 1best avg model score: 2.9874e+05 (+2.9874e+05)
+ avg # pairs: 906.3 (meaningless)
+ avg # rank err: 906.3
avg # margin viol: 0
- non0 feature count: 887
+ non0 feature count: 825
avg list sz: 91.3
- avg f count: 126.85
-(time 0.33 min, 2 s/S)
+ avg f count: 139.77
+(time 0.35 min, 2.1 s/S)
-Iteration #2 of 2.
+Iteration #2 of 3.
. 10
WEIGHTS
- Glue = -1025
- WordPenalty = +1751.5
- LanguageModel = +10059
- LanguageModel_OOV = -4490
- PhraseModel_0 = -2640.7
- PhraseModel_1 = -3757.4
- PhraseModel_2 = -1133.1
- PhraseModel_3 = +1837.3
- PhraseModel_4 = -3534.3
- PhraseModel_5 = +2308
- PhraseModel_6 = +1677
- PassThrough = -6222
+ Glue = -1221
+ WordPenalty = +836.89
+ LanguageModel = +2332.3
+ LanguageModel_OOV = -1451
+ PhraseModel_0 = +1507.2
+ PhraseModel_1 = -2728.4
+ PhraseModel_2 = -4183.6
+ PhraseModel_3 = +1816.3
+ PhraseModel_4 = -2894.7
+ PhraseModel_5 = +1403
+ PhraseModel_6 = +35
+ PassThrough = -1097
---
- 1best avg score: 0.30764 (+0.12891)
- 1best avg model score: -2.5042e+05 (-3.3882e+05)
- avg # pairs: 725.9 (meaningless)
- avg # rank err: 725.9
+ 1best avg score: 0.17399 (+0.004325)
+ 1best avg model score: 49369 (-2.4937e+05)
+ avg # pairs: 662.4 (meaningless)
+ avg # rank err: 662.4
avg # margin viol: 0
- non0 feature count: 1499
+ non0 feature count: 1235
avg list sz: 91.3
- avg f count: 114.34
-(time 0.32 min, 1.9 s/S)
+ avg f count: 125.11
+(time 0.27 min, 1.6 s/S)
+
+Iteration #3 of 3.
+ . 10
+WEIGHTS
+ Glue = -1574
+ WordPenalty = -17.372
+ LanguageModel = +6861.8
+ LanguageModel_OOV = -3997
+ PhraseModel_0 = -398.76
+ PhraseModel_1 = -3419.6
+ PhraseModel_2 = -3186.7
+ PhraseModel_3 = +1050.8
+ PhraseModel_4 = -2902.7
+ PhraseModel_5 = -486
+ PhraseModel_6 = -436
+ PassThrough = -2985
+ ---
+ 1best avg score: 0.30742 (+0.13343)
+ 1best avg model score: -1.5393e+05 (-2.0329e+05)
+ avg # pairs: 623.8 (meaningless)
+ avg # rank err: 623.8
+ avg # margin viol: 0
+ non0 feature count: 1770
+ avg list sz: 91.3
+ avg f count: 118.58
+(time 0.25 min, 1.5 s/S)
Writing weights file to '-' ...
done
---
-Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764].
-This took 0.65 min.
+Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742].
+This took 0.86667 min.
diff --git a/training/dtrain/parallelize.rb b/training/dtrain/parallelize.rb
index 2fc66cab..60ca9422 100755
--- a/training/dtrain/parallelize.rb
+++ b/training/dtrain/parallelize.rb
@@ -21,7 +21,8 @@ opts = Trollop::options do
opt :qsub, "use qsub", :type => :bool, :default => false
opt :dtrain_binary, "path to dtrain binary", :type => :string
opt :extra_qsub, "extra qsub args", :type => :string, :default => ""
- opt :per_shard_decoder_configs, "give special decoder config per shard", :type => :string, :short => :o
+ opt :per_shard_decoder_configs, "give special decoder config per shard", :type => :string, :short => '-o'
+ opt :first_input_weights, "input weights for first iter", :type => :string, :default => '', :short => '-w'
end
usage if not opts[:config]&&opts[:shards]&&opts[:input]&&opts[:references]
@@ -54,6 +55,7 @@ input = opts[:input]
refs = opts[:references]
use_qsub = opts[:qsub]
shards_at_once = opts[:processes_at_once]
+first_input_weights = opts[:first_input_weights]
`mkdir work`
@@ -137,10 +139,13 @@ end
else
cdec_cfg = ""
end
+ if first_input_weights!='' && epoch == 0
+ input_weights = "--input_weights #{first_input_weights}"
+ end
pids << Kernel.fork {
- `#{qsub_str_start}#{dtrain_bin} -c #{ini} #{cdec_cfg}\
+ `#{qsub_str_start}#{dtrain_bin} -c #{ini} #{cdec_cfg} #{input_weights}\
--input #{input_files[shard]}\
- --refs #{refs_files[shard]} #{input_weights}\
+ --refs #{refs_files[shard]}\
--output work/weights.#{shard}.#{epoch}#{qsub_str_end} #{local_end}`
}
weights_files << "work/weights.#{shard}.#{epoch}"