diff options
author | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
---|---|---|
committer | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
commit | 3d8d656fa7911524e0e6885647173474524e0784 (patch) | |
tree | 81b1ee2fcb67980376d03f0aa48e42e53abff222 /training/utils/lbfgs_test.cc | |
parent | be7f57fdd484e063775d7abf083b9fa4c403b610 (diff) | |
parent | 96fedabebafe7a38a6d5928be8fff767e411d705 (diff) |
fixed conflicts
Diffstat (limited to 'training/utils/lbfgs_test.cc')
-rw-r--r-- | training/utils/lbfgs_test.cc | 117 |
1 files changed, 117 insertions, 0 deletions
diff --git a/training/utils/lbfgs_test.cc b/training/utils/lbfgs_test.cc new file mode 100644 index 00000000..9678e788 --- /dev/null +++ b/training/utils/lbfgs_test.cc @@ -0,0 +1,117 @@ +#include <cassert> +#include <iostream> +#include <sstream> +#include <cmath> +#include "lbfgs.h" +#include "sparse_vector.h" +#include "fdict.h" + +using namespace std; + +double TestOptimizer() { + cerr << "TESTING NON-PERSISTENT OPTIMIZER\n"; + + // f(x,y) = 4x1^2 + x1*x2 + x2^2 + x3^2 + 6x3 + 5 + // df/dx1 = 8*x1 + x2 + // df/dx2 = 2*x2 + x1 + // df/dx3 = 2*x3 + 6 + double x[3]; + double g[3]; + scitbx::lbfgs::minimizer<double> opt(3); + scitbx::lbfgs::traditional_convergence_test<double> converged(3); + x[0] = 8; + x[1] = 8; + x[2] = 8; + double obj = 0; + do { + g[0] = 8 * x[0] + x[1]; + g[1] = 2 * x[1] + x[0]; + g[2] = 2 * x[2] + 6; + obj = 4 * x[0]*x[0] + x[0] * x[1] + x[1]*x[1] + x[2]*x[2] + 6 * x[2] + 5; + opt.run(x, obj, g); + if (!opt.requests_f_and_g()) { + if (converged(x,g)) break; + opt.run(x, obj, g); + } + cerr << x[0] << " " << x[1] << " " << x[2] << endl; + cerr << " obj=" << obj << "\td/dx1=" << g[0] << " d/dx2=" << g[1] << " d/dx3=" << g[2] << endl; + cerr << opt << endl; + } while (true); + return obj; +} + +double TestPersistentOptimizer() { + cerr << "\nTESTING PERSISTENT OPTIMIZER\n"; + // f(x,y) = 4x1^2 + x1*x2 + x2^2 + x3^2 + 6x3 + 5 + // df/dx1 = 8*x1 + x2 + // df/dx2 = 2*x2 + x1 + // df/dx3 = 2*x3 + 6 + double x[3]; + double g[3]; + scitbx::lbfgs::traditional_convergence_test<double> converged(3); + x[0] = 8; + x[1] = 8; + x[2] = 8; + double obj = 0; + string state; + do { + g[0] = 8 * x[0] + x[1]; + g[1] = 2 * x[1] + x[0]; + g[2] = 2 * x[2] + 6; + obj = 4 * x[0]*x[0] + x[0] * x[1] + x[1]*x[1] + x[2]*x[2] + 6 * x[2] + 5; + + { + scitbx::lbfgs::minimizer<double> opt(3); + if (state.size() > 0) { + istringstream is(state, ios::binary); + opt.deserialize(&is); + } + opt.run(x, obj, g); + ostringstream os(ios::binary); opt.serialize(&os); state = os.str(); + } + + cerr << x[0] << " " << x[1] << " " << x[2] << endl; + cerr << " obj=" << obj << "\td/dx1=" << g[0] << " d/dx2=" << g[1] << " d/dx3=" << g[2] << endl; + } while (!converged(x, g)); + return obj; +} + +void TestSparseVector() { + cerr << "Testing SparseVector<double> serialization.\n"; + int f1 = FD::Convert("Feature_1"); + int f2 = FD::Convert("Feature_2"); + FD::Convert("LanguageModel"); + int f4 = FD::Convert("SomeFeature"); + int f5 = FD::Convert("SomeOtherFeature"); + SparseVector<double> g; + g.set_value(f2, log(0.5)); + g.set_value(f4, log(0.125)); + g.set_value(f1, 0); + g.set_value(f5, 23.777); + ostringstream os; + double iobj = 1.5; + B64::Encode(iobj, g, &os); + cerr << iobj << "\t" << g << endl; + string data = os.str(); + cout << data << endl; + SparseVector<double> v; + double obj; + bool decode_b64 = B64::Decode(&obj, &v, &data[0], data.size()); + cerr << obj << "\t" << v << endl; + assert(decode_b64); + assert(obj == iobj); + assert(g.size() == v.size()); +} + +int main() { + double o1 = TestOptimizer(); + double o2 = TestPersistentOptimizer(); + if (fabs(o1 - o2) > 1e-5) { + cerr << "OPTIMIZERS PERFORMED DIFFERENTLY!\n" << o1 << " vs. " << o2 << endl; + return 1; + } + TestSparseVector(); + cerr << "SUCCESS\n"; + return 0; +} + |