summaryrefslogtreecommitdiff
path: root/training/mira/mira.py
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2013-11-13 18:12:10 +0100
committerPatrick Simianer <p@simianer.de>2013-11-13 18:12:10 +0100
commitd6e6babf2cfe49fed040b651624b7e34d1a9b507 (patch)
tree2a00ab18f10a7f93e7e172551c01b48cc9f20b8c /training/mira/mira.py
parent2d2d5eced93d58bc77894d8c328195cd9950b96d (diff)
parent8a24bb77bc2e9fd17a6f6529a2942cde96a6af49 (diff)
merge w/ upstream
Diffstat (limited to 'training/mira/mira.py')
-rwxr-xr-xtraining/mira/mira.py100
1 files changed, 52 insertions, 48 deletions
diff --git a/training/mira/mira.py b/training/mira/mira.py
index 29c51e1d..d5a1d9f8 100755
--- a/training/mira/mira.py
+++ b/training/mira/mira.py
@@ -4,8 +4,19 @@ import subprocess, shlex, glob
import argparse
import logging
import random, time
-import cdec.score
import gzip, itertools
+try:
+ import cdec.score
+except ImportError:
+ sys.stderr.write('Could not import pycdec, see cdec/python/README.md for details\n')
+ sys.exit(1)
+have_mpl = True
+try:
+ import matplotlib
+ matplotlib.use('Agg')
+ import matplotlib.pyplot as plt
+except ImportError:
+ have_mpl = False
#mira run script
#requires pycdec to be built, since it is used for scoring hypothesis
@@ -16,17 +27,17 @@ import gzip, itertools
#scoring function using pycdec scoring
def fast_score(hyps, refs, metric):
scorer = cdec.score.Scorer(metric)
- logging.info('loaded {0} references for scoring with {1}\n'.format(
+ logging.info('loaded {0} references for scoring with {1}'.format(
len(refs), metric))
if metric=='BLEU':
logging.warning('BLEU is ambiguous, assuming IBM_BLEU\n')
metric = 'IBM_BLEU'
elif metric=='COMBI':
logging.warning('COMBI metric is no longer supported, switching to '
- 'COMB:TER=-0.5;BLEU=0.5\n')
+ 'COMB:TER=-0.5;BLEU=0.5')
metric = 'COMB:TER=-0.5;BLEU=0.5'
stats = sum(scorer(r).evaluate(h) for h,r in itertools.izip(hyps,refs))
- logging.info(stats.detail+'\n')
+ logging.info('Score={} ({})'.format(stats.score, stats.detail))
return stats.score
#create new parallel input file in output directory in sgml format
@@ -71,6 +82,8 @@ def main():
#set logging to write all info messages to stderr
logging.basicConfig(level=logging.INFO)
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
+ if not have_mpl:
+ logging.warning('Failed to import matplotlib, graphs will not be generated.')
parser= argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
@@ -181,10 +194,11 @@ def main():
dev_size = enseg(args.devset, newdev, args.grammar_prefix)
args.devset = newdev
- write_config(args)
+ log_config(args)
args.weights, hope_best_fear = optimize(args, script_dir, dev_size)
- graph_file = graph(args.output_dir, hope_best_fear, args.metric)
+ graph_file = ''
+ if have_mpl: graph_file = graph(args.output_dir, hope_best_fear, args.metric)
dev_results, dev_bleu = evaluate(args.devset, args.weights, args.config,
script_dir, args.output_dir)
@@ -205,17 +219,12 @@ def main():
if graph_file:
logging.info('A graph of the best/hope/fear scores over the iterations '
- 'has been saved to {}\n'.format(graph_file))
+ 'has been saved to {}'.format(graph_file))
print 'final weights:\n{}\n'.format(args.weights)
#graph of hope/best/fear metric values across all iterations
def graph(output_dir, hope_best_fear, metric):
- try:
- import matplotlib.pyplot as plt
- except ImportError:
- logging.error('Error importing matplotlib. Graphing disabled.\n')
- return ''
max_y = float(max(hope_best_fear['best']))*1.5
plt.plot(hope_best_fear['best'], label='best')
plt.plot(hope_best_fear['hope'], label='hope')
@@ -308,6 +317,7 @@ def optimize(args, script_dir, dev_size):
decoder = script_dir+'/kbest_cut_mira'
(source, refs) = split_devset(args.devset, args.output_dir)
port = random.randint(15000,50000)
+ logging.info('using port {}'.format(port))
num_features = 0
last_p_score = 0
best_score_iter = -1
@@ -316,8 +326,8 @@ def optimize(args, script_dir, dev_size):
hope_best_fear = {'hope':[],'best':[],'fear':[]}
#main optimization loop
while i<args.max_iterations:
- logging.info('\n\nITERATION {}\n========\n'.format(i))
- logging.info('using port {}\n'.format(port))
+ logging.info('======= STARTING ITERATION {} ======='.format(i))
+ logging.info('Starting at {}'.format(time.asctime()))
#iteration specific files
runfile = args.output_dir+'/run.raw.'+str(i)
@@ -327,10 +337,8 @@ def optimize(args, script_dir, dev_size):
weightdir = args.output_dir+'/weights.pass'+str(i)
os.mkdir(logdir)
os.mkdir(weightdir)
-
- logging.info('RUNNING DECODER AT {}'.format(time.asctime()))
weightsfile = args.output_dir+'/weights.'+str(i)
- logging.info('ITER {}\n'.format(i))
+ logging.info(' log directory={}'.format(logdir))
curr_pass = '0{}'.format(i)
decoder_cmd = ('{0} -c {1} -w {2} -r{3} -m {4} -s {5} -b {6} -k {7} -o {8}'
' -p {9} -O {10} -D {11} -h {12} -f {13} -C {14}').format(
@@ -350,7 +358,7 @@ def optimize(args, script_dir, dev_size):
parallelize, logdir, args.jobs)
cmd = parallel_cmd + ' ' + decoder_cmd
- logging.info('COMMAND: \n{}\n'.format(cmd))
+ logging.info('OPTIMIZATION COMMAND: {}'.format(cmd))
dlog = open(decoderlog,'w')
runf = open(runfile,'w')
@@ -365,27 +373,26 @@ def optimize(args, script_dir, dev_size):
p1.stdout.close()
if exit_code:
- logging.error('Failed with exit code {}\n'.format(exit_code))
+ logging.error('Failed with exit code {}'.format(exit_code))
sys.exit(exit_code)
try:
f = open(runfile)
except IOError, msg:
- logging.error('Unable to open {}\n'.format(runfile))
+ logging.error('Unable to open {}'.format(runfile))
sys.exit()
num_topbest = sum(1 for line in f)
f.close()
if num_topbest == dev_size: break
- logging.warning('Incorrect number of top best. '
- 'Waiting for distributed filesystem and retrying.')
+ logging.warning('Incorrect number of top best. Sleeping for 10 seconds and retrying...')
time.sleep(10)
retries += 1
if dev_size != num_topbest:
logging.error("Dev set contains "+dev_size+" sentences, but we don't "
"have topbest for all of these. Decoder failure? "
- " Check "+decoderlog+'\n')
+ " Check "+decoderlog)
sys.exit()
dlog.close()
runf.close()
@@ -427,7 +434,7 @@ def optimize(args, script_dir, dev_size):
hope_best_fear['hope'].append(dec_score)
hope_best_fear['best'].append(dec_score_h)
hope_best_fear['fear'].append(dec_score_f)
- logging.info('DECODER SCORE: {0} HOPE: {1} FEAR: {2}\n'.format(
+ logging.info('DECODER SCORE: {0} HOPE: {1} FEAR: {2}'.format(
dec_score, dec_score_h, dec_score_f))
if dec_score > best_score:
best_score_iter = i
@@ -436,12 +443,13 @@ def optimize(args, script_dir, dev_size):
new_weights_file = '{}/weights.{}'.format(args.output_dir, i+1)
last_weights_file = '{}/weights.{}'.format(args.output_dir, i)
i += 1
- weight_files = weightdir+'/weights.mira-pass*.*[0-9].gz'
+ weight_files = args.output_dir+'/weights.pass*/weights.mira-pass*[0-9].gz'
average_weights(new_weights_file, weight_files)
- logging.info('\nBEST ITER: {} :: {}\n\n'.format(
+ logging.info('BEST ITERATION: {} (SCORE={})'.format(
best_score_iter, best_score))
weights_final = args.output_dir+'/weights.final'
+ logging.info('WEIGHTS FILE: {}'.format(weights_final))
shutil.copy(last_weights_file, weights_final)
average_final_weights(args.output_dir)
@@ -481,15 +489,15 @@ def gzip_file(filename):
#average the weights for a given pass
def average_weights(new_weights, weight_files):
- logging.info('AVERAGE {} {}\n'.format(new_weights, weight_files))
+ logging.info('AVERAGE {} {}'.format(new_weights, weight_files))
feature_weights = {}
total_mult = 0.0
for path in glob.glob(weight_files):
score = gzip.open(path)
mult = 0
- logging.info('FILE {}\n'.format(path))
+ logging.info(' FILE {}'.format(path))
msg, ran, mult = score.readline().strip().split(' ||| ')
- logging.info('Processing {} {}'.format(ran, mult))
+ logging.info(' Processing {} {}'.format(ran, mult))
for line in score:
f,w = line.split(' ',1)
if f in feature_weights:
@@ -500,34 +508,30 @@ def average_weights(new_weights, weight_files):
score.close()
#write new weights to outfile
+ logging.info('Writing averaged weights to {}'.format(new_weights))
out = open(new_weights, 'w')
for f in iter(feature_weights):
avg = feature_weights[f]/total_mult
- logging.info('{} {} {} ||| Printing {} {}\n'.format(f,feature_weights[f],
- total_mult, f, avg))
out.write('{} {}\n'.format(f,avg))
-def write_config(args):
- config = ('\n'
- 'DECODER: '
- '/usr0/home/eschling/cdec/training/mira/kbest_cut_mira\n'
- 'INI FILE: '+args.config+'\n'
- 'WORKING DIRECTORY: '+args.output_dir+'\n'
- 'DEVSET: '+args.devset+'\n'
- 'EVAL METRIC: '+args.metric+'\n'
- 'MAX ITERATIONS: '+str(args.max_iterations)+'\n'
- 'DECODE NODES: '+str(args.jobs)+'\n'
- 'INITIAL WEIGHTS: '+args.weights+'\n')
+def log_config(args):
+ logging.info('WORKING DIRECTORY={}'.format(args.output_dir))
+ logging.info('INI FILE={}'.format(args.config))
+ logging.info('DEVSET={}'.format(args.devset))
+ logging.info('EVAL METRIC={}'.format(args.metric))
+ logging.info('MAX ITERATIONS={}'.format(args.max_iterations))
+ logging.info('PARALLEL JOBS={}'.format(args.jobs))
+ logging.info('INITIAL WEIGHTS={}'.format(args.weights))
if args.grammar_prefix:
- config += 'GRAMMAR PREFIX: '+str(args.grammar_prefix)+'\n'
+ logging.info('GRAMMAR PREFIX={}'.format(args.grammar_prefix))
if args.test:
- config += 'TEST SET: '+args.test+'\n'
+ logging.info('TEST SET={}'.format(args.test))
+ else:
+ logging.info('TEST SET=none specified')
if args.test_config:
- config += 'TEST CONFIG: '+args.test_config+'\n'
+ logging.info('TEST CONFIG={}'.format(args.test_config))
if args.email:
- config += 'EMAIL: '+args.email+'\n'
-
- logging.info(config)
+ logging.info('EMAIL={}'.format(args.email))
if __name__=='__main__':
main()