summaryrefslogtreecommitdiff
path: root/training/mira/kbest_cut_mira.cc
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2013-05-02 09:09:59 +0200
committerPatrick Simianer <p@simianer.de>2013-05-02 09:09:59 +0200
commit9e50f0237413180fba11b500c9dce5c600e3c157 (patch)
tree556fc31d231353c853a864afffddd43dc525549a /training/mira/kbest_cut_mira.cc
parentd18024a41cbc1b54db88d499571349a6234b6db8 (diff)
parent14ed53426726202813a8e82d706b44266f015fe1 (diff)
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'training/mira/kbest_cut_mira.cc')
-rw-r--r--training/mira/kbest_cut_mira.cc954
1 files changed, 954 insertions, 0 deletions
diff --git a/training/mira/kbest_cut_mira.cc b/training/mira/kbest_cut_mira.cc
new file mode 100644
index 00000000..7df9a18f
--- /dev/null
+++ b/training/mira/kbest_cut_mira.cc
@@ -0,0 +1,954 @@
+#include <sstream>
+#include <iostream>
+#include <vector>
+#include <cassert>
+#include <cmath>
+#include <algorithm>
+
+#include "config.h"
+
+
+#include <boost/shared_ptr.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "sentence_metadata.h"
+#include "scorer.h"
+#include "verbose.h"
+#include "viterbi.h"
+#include "hg.h"
+#include "prob.h"
+#include "kbest.h"
+#include "ff_register.h"
+#include "decoder.h"
+#include "filelib.h"
+#include "fdict.h"
+#include "time.h"
+#include "sampler.h"
+
+#include "weights.h"
+#include "sparse_vector.h"
+
+using namespace std;
+using boost::shared_ptr;
+namespace po = boost::program_options;
+
+bool invert_score;
+boost::shared_ptr<MT19937> rng;
+bool approx_score;
+bool no_reweight;
+bool no_select;
+bool unique_kbest;
+int update_list_size;
+vector<weight_t> dense_w_local;
+double mt_metric_scale;
+int optimizer;
+int fear_select;
+int hope_select;
+bool pseudo_doc;
+bool sent_approx;
+bool checkloss;
+
+void SanityCheck(const vector<double>& w) {
+ for (int i = 0; i < w.size(); ++i) {
+ assert(!isnan(w[i]));
+ assert(!isinf(w[i]));
+ }
+}
+
+struct FComp {
+ const vector<double>& w_;
+ FComp(const vector<double>& w) : w_(w) {}
+ bool operator()(int a, int b) const {
+ return fabs(w_[a]) > fabs(w_[b]);
+ }
+};
+
+void ShowLargestFeatures(const vector<double>& w) {
+ vector<int> fnums(w.size());
+ for (int i = 0; i < w.size(); ++i)
+ fnums[i] = i;
+ vector<int>::iterator mid = fnums.begin();
+ mid += (w.size() > 10 ? 10 : w.size());
+ partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
+ cerr << "TOP FEATURES:";
+ for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
+ cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
+ }
+ cerr << endl;
+}
+
+bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("input_weights,w",po::value<string>(),"Input feature weights file")
+ ("source,i",po::value<string>(),"Source file for development set")
+ ("pass,p", po::value<int>()->default_value(15), "Current pass through the training data")
+ ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)")
+ ("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)")
+ ("optimizer,o",po::value<int>()->default_value(1), "Optimizer (SGD=1, PA MIRA w/Delta=2, Cutting Plane MIRA=3, PA MIRA=4, Triple nbest list MIRA=5)")
+ ("fear,f",po::value<int>()->default_value(1), "Fear selection (model-cost=1, maxcost=2, maxscore=3)")
+ ("hope,h",po::value<int>()->default_value(1), "Hope selection (model+cost=1, mincost=2)")
+ ("max_step_size,C", po::value<double>()->default_value(0.01), "regularization strength (C)")
+ ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
+ ("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by")
+ ("sent_approx,a", "Use smoothed sentence-level BLEU score for approximate scoring")
+ ("pseudo_doc,e", "Use pseudo-document BLEU score for approximate scoring")
+ ("no_reweight,d","Do not reweight forest for cutting plane")
+ ("no_select,n", "Do not use selection heuristic")
+ ("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles")
+ ("update_k_best,b", po::value<int>()->default_value(1), "Size of good, bad lists to perform update with")
+ ("unique_k_best,u", "Unique k-best translation list")
+ ("weights_output,O",po::value<string>(),"Directory to write weights to")
+ ("output_dir,D",po::value<string>(),"Directory to place output in")
+ ("decoder_config,c",po::value<string>(),"Decoder configuration file");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,H", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || !conf->count("input_weights") || !conf->count("decoder_config") || !conf->count("reference")) {
+ cerr << dcmdline_options << endl;
+ return false;
+ }
+ return true;
+}
+
+//load previous translation, store array of each sentences score, subtract it from current sentence and replace with new translation score
+
+
+static const double kMINUS_EPSILON = -1e-6;
+static const double EPSILON = 0.000001;
+static const double SMO_EPSILON = 0.0001;
+static const double PSEUDO_SCALE = 0.95;
+static const int MAX_SMO = 10;
+int cur_pass;
+
+struct HypothesisInfo {
+ SparseVector<double> features;
+ vector<WordID> hyp;
+ double mt_metric;
+ double hope;
+ double fear;
+ double alpha;
+ double oracle_loss;
+ SparseVector<double> oracle_feat_diff;
+ shared_ptr<HypothesisInfo> oracleN;
+};
+
+bool ApproxEqual(double a, double b) {
+ if (a == b) return true;
+ return (fabs(a-b)/fabs(b)) < EPSILON;
+}
+
+typedef shared_ptr<HypothesisInfo> HI;
+bool HypothesisCompareB(const HI& h1, const HI& h2 )
+{
+ return h1->mt_metric > h2->mt_metric;
+};
+
+
+bool HopeCompareB(const HI& h1, const HI& h2 )
+{
+ return h1->hope > h2->hope;
+};
+
+bool FearCompareB(const HI& h1, const HI& h2 )
+{
+ return h1->fear > h2->fear;
+};
+
+bool FearComparePred(const HI& h1, const HI& h2 )
+{
+ return h1->features.dot(dense_w_local) > h2->features.dot(dense_w_local);
+};
+
+bool HypothesisCompareG(const HI& h1, const HI& h2 )
+{
+ return h1->mt_metric < h2->mt_metric;
+};
+
+
+void CuttingPlane(vector<shared_ptr<HypothesisInfo> >* cur_c, bool* again, vector<shared_ptr<HypothesisInfo> >& all_hyp, vector<weight_t> dense_weights)
+{
+ bool DEBUG_CUT = false;
+ shared_ptr<HypothesisInfo> max_fear, max_fear_in_set;
+ vector<shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
+
+ if(no_reweight)
+ {
+ //find new hope hypothesis
+ for(int u=0;u!=all_hyp.size();u++)
+ {
+ double t_score = all_hyp[u]->features.dot(dense_weights);
+ all_hyp[u]->hope = 1 * all_hyp[u]->mt_metric + t_score;
+ }
+
+ //sort hyps by hope score
+ sort(all_hyp.begin(),all_hyp.end(),HopeCompareB);
+
+ double hope_score = all_hyp[0]->features.dot(dense_weights);
+ if(DEBUG_CUT) cerr << "New hope derivation score " << hope_score << endl;
+
+ for(int u=0;u!=all_hyp.size();u++)
+ {
+ double t_score = all_hyp[u]->features.dot(dense_weights);
+ all_hyp[u]->fear = -1*all_hyp[u]->mt_metric + 1*all_hyp[0]->mt_metric - hope_score + t_score; //relative loss
+ }
+
+ sort(all_hyp.begin(),all_hyp.end(),FearCompareB);
+
+ }
+ //assign maximum fear derivation from all derivations
+ max_fear = all_hyp[0];
+
+ if(DEBUG_CUT) cerr <<"Cutting Plane Max Fear "<<max_fear->fear ;
+ for(int i=0; i < cur_constraint.size();i++) //select maximal violator already in constraint set
+ {
+ if (!max_fear_in_set || cur_constraint[i]->fear > max_fear_in_set->fear)
+ max_fear_in_set = cur_constraint[i];
+ }
+ if(DEBUG_CUT) cerr << "Max Fear in constraint set " << max_fear_in_set->fear << endl;
+
+ if(max_fear->fear > max_fear_in_set->fear + SMO_EPSILON)
+ {
+ cur_constraint.push_back(max_fear);
+ *again = true;
+ if(DEBUG_CUT) cerr << "Optimize Again " << *again << endl;
+ }
+}
+
+
+double ComputeDelta(vector<shared_ptr<HypothesisInfo> >* cur_p, double max_step_size,vector<weight_t> dense_weights )
+{
+ vector<shared_ptr<HypothesisInfo> >& cur_pair = *cur_p;
+ double loss = cur_pair[0]->oracle_loss - cur_pair[1]->oracle_loss;
+
+ double margin = -(cur_pair[0]->oracleN->features.dot(dense_weights)- cur_pair[0]->features.dot(dense_weights)) + (cur_pair[1]->oracleN->features.dot(dense_weights) - cur_pair[1]->features.dot(dense_weights));
+ const double num = margin + loss;
+ cerr << "LOSS: " << num << " Margin:" << margin << " BLEUL:" << loss << " " << cur_pair[1]->features.dot(dense_weights) << " " << cur_pair[0]->features.dot(dense_weights) <<endl;
+
+
+ SparseVector<double> diff = cur_pair[0]->features;
+ diff -= cur_pair[1]->features;
+ double diffsqnorm = diff.l2norm_sq();
+ double delta;
+ if (diffsqnorm > 0)
+ delta = num / (diffsqnorm * max_step_size);
+ else
+ delta = 0;
+ cerr << " D1:" << delta;
+ //clip delta (enforce margin constraints)
+ delta = max(-cur_pair[0]->alpha, min(delta, cur_pair[1]->alpha));
+ cerr << " D2:" << delta;
+ return delta;
+}
+
+
+vector<shared_ptr<HypothesisInfo> > SelectPair(vector<shared_ptr<HypothesisInfo> >* cur_c)
+{
+ bool DEBUG_SELECT= false;
+ vector<shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
+
+ vector<shared_ptr<HypothesisInfo> > pair;
+
+ if (no_select || optimizer == 2){ //skip heuristic search and return oracle and fear for pa-mira
+
+ pair.push_back(cur_constraint[0]);
+ pair.push_back(cur_constraint[1]);
+ return pair;
+
+ }
+
+ for(int u=0;u != cur_constraint.size();u++)
+ {
+ shared_ptr<HypothesisInfo> max_fear;
+
+ if(DEBUG_SELECT) cerr<< "cur alpha " << u << " " << cur_constraint[u]->alpha;
+ for(int i=0; i < cur_constraint.size();i++) //select maximal violator
+ {
+ if(i != u)
+ if (!max_fear || cur_constraint[i]->fear > max_fear->fear)
+ max_fear = cur_constraint[i];
+ }
+ if(!max_fear) return pair; //
+
+
+ if ((cur_constraint[u]->alpha == 0) && (cur_constraint[u]->fear > max_fear->fear + SMO_EPSILON))
+ {
+ for(int i=0; i < cur_constraint.size();i++) //select maximal violator
+ {
+ if(i != u)
+ if (cur_constraint[i]->alpha > 0)
+ {
+ pair.push_back(cur_constraint[u]);
+ pair.push_back(cur_constraint[i]);
+ return pair;
+ }
+ }
+ }
+ if ((cur_constraint[u]->alpha > 0) && (cur_constraint[u]->fear < max_fear->fear - SMO_EPSILON))
+ {
+ for(int i=0; i < cur_constraint.size();i++) //select maximal violator
+ {
+ if(i != u)
+ if (cur_constraint[i]->fear > cur_constraint[u]->fear)
+ {
+ pair.push_back(cur_constraint[u]);
+ pair.push_back(cur_constraint[i]);
+ return pair;
+ }
+ }
+ }
+
+ }
+ return pair; //no more constraints to optimize, we're done here
+
+}
+
+struct GoodBadOracle {
+ vector<shared_ptr<HypothesisInfo> > good;
+ vector<shared_ptr<HypothesisInfo> > bad;
+};
+
+struct TrainingObserver : public DecoderObserver {
+ TrainingObserver(const int k, const DocScorer& d, vector<GoodBadOracle>* o, vector<ScoreP>* cbs) : ds(d), oracles(*o), corpus_bleu_sent_stats(*cbs), kbest_size(k) {
+
+
+ if(!pseudo_doc && !sent_approx)
+ if(cur_pass > 0) //calculate corpus bleu score from previous iterations 1-best for BLEU gain
+ {
+ ScoreP acc;
+ for (int ii = 0; ii < corpus_bleu_sent_stats.size(); ii++) {
+ if (!acc) { acc = corpus_bleu_sent_stats[ii]->GetZero(); }
+ acc->PlusEquals(*corpus_bleu_sent_stats[ii]);
+
+ }
+ corpus_bleu_stats = acc;
+ corpus_bleu_score = acc->ComputeScore();
+ }
+
+}
+ const DocScorer& ds;
+ vector<ScoreP>& corpus_bleu_sent_stats;
+ vector<GoodBadOracle>& oracles;
+ vector<shared_ptr<HypothesisInfo> > cur_best;
+ shared_ptr<HypothesisInfo> cur_oracle;
+ const int kbest_size;
+ Hypergraph forest;
+ int cur_sent;
+ ScoreP corpus_bleu_stats;
+ float corpus_bleu_score;
+
+ float corpus_src_length;
+ float curr_src_length;
+
+ const int GetCurrentSent() const {
+ return cur_sent;
+ }
+
+ const HypothesisInfo& GetCurrentBestHypothesis() const {
+ return *cur_best[0];
+ }
+
+ const vector<shared_ptr<HypothesisInfo> > GetCurrentBest() const {
+ return cur_best;
+ }
+
+ const HypothesisInfo& GetCurrentOracle() const {
+ return *cur_oracle;
+ }
+
+ const Hypergraph& GetCurrentForest() const {
+ return forest;
+ }
+
+
+ virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
+ cur_sent = smeta.GetSentenceID();
+ curr_src_length = (float) smeta.GetSourceLength();
+
+ if(unique_kbest)
+ UpdateOracles<KBest::FilterUnique>(smeta.GetSentenceID(), *hg);
+ else
+ UpdateOracles<KBest::NoFilter<std::vector<WordID> > >(smeta.GetSentenceID(), *hg);
+ forest = *hg;
+
+ }
+
+ shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score, const vector<WordID>& hyp) {
+ shared_ptr<HypothesisInfo> h(new HypothesisInfo);
+ h->features = feats;
+ h->mt_metric = score;
+ h->hyp = hyp;
+ return h;
+ }
+
+ template <class Filter>
+ void UpdateOracles(int sent_id, const Hypergraph& forest) {
+
+ bool PRINT_LIST= false;
+ vector<shared_ptr<HypothesisInfo> >& cur_good = oracles[sent_id].good;
+ vector<shared_ptr<HypothesisInfo> >& cur_bad = oracles[sent_id].bad;
+ //TODO: look at keeping previous iterations hypothesis lists around
+ cur_best.clear();
+ cur_good.clear();
+ cur_bad.clear();
+
+ vector<shared_ptr<HypothesisInfo> > all_hyp;
+
+ typedef KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,Filter> K;
+ K kbest(forest,kbest_size);
+
+ for (int i = 0; i < kbest_size; ++i) {
+
+ typename K::Derivation *d =
+ kbest.LazyKthBest(forest.nodes_.size() - 1, i);
+ if (!d) break;
+
+ float sentscore;
+ if(cur_pass > 0 && !pseudo_doc && !sent_approx)
+ {
+ ScoreP sent_stats = ds[sent_id]->ScoreCandidate(d->yield);
+ ScoreP corpus_no_best = corpus_bleu_stats->GetZero();
+
+ corpus_bleu_stats->Subtract(*corpus_bleu_sent_stats[sent_id], &*corpus_no_best);
+ sent_stats->PlusEquals(*corpus_no_best, 0.5);
+
+ //compute gain from new sentence in 1-best corpus
+ sentscore = mt_metric_scale * (sent_stats->ComputeScore() - corpus_no_best->ComputeScore());// - corpus_bleu_score);
+ }
+ else if(pseudo_doc) //pseudo-corpus smoothing
+ {
+ float src_scale = corpus_src_length + curr_src_length;
+ ScoreP sent_stats = ds[sent_id]->ScoreCandidate(d->yield);
+ if(!corpus_bleu_stats){ corpus_bleu_stats = sent_stats->GetZero();}
+
+ sent_stats->PlusEquals(*corpus_bleu_stats);
+ sentscore = mt_metric_scale * src_scale * sent_stats->ComputeScore();
+
+ }
+ else //use sentence-level smoothing ( used when cur_pass=0 if not pseudo_doc)
+ {
+
+ sentscore = mt_metric_scale * (ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore());
+ }
+
+ if (invert_score) sentscore *= -1.0;
+
+ if (i < update_list_size){
+ if(PRINT_LIST)cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl;
+ cur_best.push_back( MakeHypothesisInfo(d->feature_values, sentscore, d->yield));
+ }
+
+ all_hyp.push_back(MakeHypothesisInfo(d->feature_values, sentscore,d->yield)); //store all hyp to extract hope and fear
+ }
+
+ if(pseudo_doc){
+ //update psuedo-doc stats
+ string details, details2;
+ corpus_bleu_stats->ScoreDetails(&details2);
+ ScoreP sent_stats = ds[sent_id]->ScoreCandidate(cur_best[0]->hyp);
+ corpus_bleu_stats->PlusEquals(*sent_stats);
+
+ sent_stats->ScoreDetails(&details);
+ sent_stats = corpus_bleu_stats;
+ corpus_bleu_stats = sent_stats->GetZero();
+ corpus_bleu_stats->PlusEquals(*sent_stats, PSEUDO_SCALE);
+
+ corpus_src_length = PSEUDO_SCALE * (corpus_src_length + curr_src_length);
+ cerr << "ps corpus size: " << corpus_src_length << " " << curr_src_length << "\n" << details << "\n" << details2 << endl;
+ }
+
+ //figure out how many hyps we can keep maximum
+ int temp_update_size = update_list_size;
+ if (all_hyp.size() < update_list_size){ temp_update_size = all_hyp.size();}
+
+ //sort all hyps by sentscore (eg. bleu)
+ sort(all_hyp.begin(),all_hyp.end(),HypothesisCompareB);
+
+ if(PRINT_LIST){ cerr << "Sorting " << endl; for(int u=0;u!=all_hyp.size();u++)
+ cerr << all_hyp[u]->mt_metric << " " << all_hyp[u]->features.dot(dense_w_local) << endl; }
+
+ if(hope_select == 1)
+ {
+ //find hope hypothesis using model + bleu
+ if (PRINT_LIST) cerr << "HOPE " << endl;
+ for(int u=0;u!=all_hyp.size();u++)
+ {
+ double t_score = all_hyp[u]->features.dot(dense_w_local);
+ all_hyp[u]->hope = all_hyp[u]->mt_metric + t_score;
+ if (PRINT_LIST) cerr << all_hyp[u]->mt_metric << " H:" << all_hyp[u]->hope << " S:" << t_score << endl;
+
+ }
+
+ //sort hyps by hope score
+ sort(all_hyp.begin(),all_hyp.end(),HopeCompareB);
+ }
+
+ //assign cur_good the sorted list
+ cur_good.insert(cur_good.begin(), all_hyp.begin(), all_hyp.begin()+temp_update_size);
+ if(PRINT_LIST) { cerr << "GOOD" << endl; for(int u=0;u!=cur_good.size();u++) cerr << cur_good[u]->mt_metric << " " << cur_good[u]->hope << endl;}
+
+ //use hope for fear selection
+ shared_ptr<HypothesisInfo>& oracleN = cur_good[0];
+
+ if(fear_select == 1){ //compute fear hyps with model - bleu
+ if (PRINT_LIST) cerr << "FEAR " << endl;
+ double hope_score = oracleN->features.dot(dense_w_local);
+
+ if (PRINT_LIST) cerr << "hope score " << hope_score << endl;
+ for(int u=0;u!=all_hyp.size();u++)
+ {
+ double t_score = all_hyp[u]->features.dot(dense_w_local);
+
+ all_hyp[u]->fear = -1*all_hyp[u]->mt_metric + 1*oracleN->mt_metric - hope_score + t_score; //relative loss
+ all_hyp[u]->oracle_loss = -1*all_hyp[u]->mt_metric + 1*oracleN->mt_metric;
+ all_hyp[u]->oracle_feat_diff = oracleN->features - all_hyp[u]->features;
+ all_hyp[u]->oracleN=oracleN;
+ if (PRINT_LIST) cerr << all_hyp[u]->mt_metric << " H:" << all_hyp[u]->hope << " F:" << all_hyp[u]->fear << endl;
+
+ }
+
+ sort(all_hyp.begin(),all_hyp.end(),FearCompareB);
+
+ }
+ else if(fear_select == 2) //select fear based on cost
+ {
+ sort(all_hyp.begin(),all_hyp.end(),HypothesisCompareG);
+ }
+ else //max model score, also known as prediction-based
+ {
+ sort(all_hyp.begin(),all_hyp.end(),FearComparePred);
+ }
+ cur_bad.insert(cur_bad.begin(), all_hyp.begin(), all_hyp.begin()+temp_update_size);
+
+ if(PRINT_LIST){ cerr<< "BAD"<<endl; for(int u=0;u!=cur_bad.size();u++) cerr << cur_bad[u]->mt_metric << " H:" << cur_bad[u]->hope << " F:" << cur_bad[u]->fear << endl;}
+
+ cerr << "GOOD (BEST): " << cur_good[0]->mt_metric << endl;
+ cerr << " CUR: " << cur_best[0]->mt_metric << endl;
+ cerr << " BAD (WORST): " << cur_bad[0]->mt_metric << endl;
+ }
+};
+
+void ReadTrainingCorpus(const string& fname, vector<string>* c) {
+
+
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ while(in) {
+ getline(in, line);
+ if (!in) break;
+ c->push_back(line);
+ }
+}
+
+void ReadPastTranslationForScore(const int cur_pass, vector<ScoreP>* c, DocScorer& ds, const string& od)
+{
+ cerr << "Reading BLEU gain file ";
+ string fname;
+ if(cur_pass == 0)
+ {
+ fname = od + "/run.raw.init";
+ }
+ else
+ {
+ int last_pass = cur_pass - 1;
+ fname = od + "/run.raw." + boost::lexical_cast<std::string>(last_pass) + ".B";
+ }
+ cerr << fname << "\n";
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ ScoreP acc;
+ string line;
+ int lc = 0;
+ while(in) {
+ getline(in, line);
+ if (line.empty() && !in) break;
+ vector<WordID> sent;
+ TD::ConvertSentence(line, &sent);
+ ScoreP sentscore = ds[lc]->ScoreCandidate(sent);
+ c->push_back(sentscore);
+ if (!acc) { acc = sentscore->GetZero(); }
+ acc->PlusEquals(*sentscore);
+ ++lc;
+
+ }
+
+ assert(lc > 0);
+ float score = acc->ComputeScore();
+ string details;
+ acc->ScoreDetails(&details);
+ cerr << "Previous run: " << details << score << endl;
+
+}
+
+
+int main(int argc, char** argv) {
+ register_feature_functions();
+ SetSilent(true); // turn off verbose decoder output
+
+ po::variables_map conf;
+ if (!InitCommandLine(argc, argv, &conf)) return 1;
+
+ if (conf.count("random_seed"))
+ rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ rng.reset(new MT19937);
+
+ vector<string> corpus;
+
+ const string metric_name = conf["mt_metric"].as<string>();
+ optimizer = conf["optimizer"].as<int>();
+ fear_select = conf["fear"].as<int>();
+ hope_select = conf["hope"].as<int>();
+ mt_metric_scale = conf["mt_metric_scale"].as<double>();
+ approx_score = conf.count("approx_score");
+ no_reweight = conf.count("no_reweight");
+ no_select = conf.count("no_select");
+ update_list_size = conf["update_k_best"].as<int>();
+ unique_kbest = conf.count("unique_k_best");
+ pseudo_doc = conf.count("pseudo_doc");
+ sent_approx = conf.count("sent_approx");
+ cerr << "Using pseudo-doc:" << pseudo_doc << " Sent:" << sent_approx << endl;
+ if(pseudo_doc)
+ mt_metric_scale=1;
+
+ const string weights_dir = conf["weights_output"].as<string>();
+ const string output_dir = conf["output_dir"].as<string>();
+ ScoreType type = ScoreTypeFromString(metric_name);
+
+ //establish metric used for tuning
+ if (type == TER) {
+ invert_score = true;
+ } else {
+ invert_score = false;
+ }
+
+ //load references
+ DocScorer ds(type, conf["reference"].as<vector<string> >(), "");
+ cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl;
+ vector<ScoreP> corpus_bleu_sent_stats;
+
+ //check training pass,if >0, then use previous iterations corpus bleu stats
+ cur_pass = conf["pass"].as<int>();
+ if(cur_pass > 0)
+ {
+ ReadPastTranslationForScore(cur_pass, &corpus_bleu_sent_stats, ds, output_dir);
+ }
+
+ cerr << "Using optimizer:" << optimizer << endl;
+
+ ReadFile ini_rf(conf["decoder_config"].as<string>());
+ Decoder decoder(ini_rf.stream());
+
+ vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
+
+ SparseVector<weight_t> lambdas;
+ Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights);
+ Weights::InitSparseVector(dense_weights, &lambdas);
+
+ const string input = decoder.GetConf()["input"].as<string>();
+ if (!SILENT) cerr << "Reading input from " << ((input == "-") ? "STDIN" : input.c_str()) << endl;
+ ReadFile in_read(input);
+ istream *in = in_read.stream();
+ assert(*in);
+ string buf;
+
+ const double max_step_size = conf["max_step_size"].as<double>();
+
+ vector<GoodBadOracle> oracles(ds.size());
+
+ TrainingObserver observer(conf["k_best_size"].as<int>(), ds, &oracles, &corpus_bleu_sent_stats);
+
+ int cur_sent = 0;
+ int lcount = 0;
+ double objective=0;
+ double tot_loss = 0;
+ int dots = 0;
+ SparseVector<double> tot;
+ SparseVector<double> final_tot;
+
+ SparseVector<double> old_lambdas = lambdas;
+ tot.clear();
+ tot += lambdas;
+ cerr << "PASS " << cur_pass << " " << endl << lambdas << endl;
+ ScoreP acc, acc_h, acc_f;
+
+ while(*in) {
+ getline(*in, buf);
+ if (buf.empty()) continue;
+ //TODO: allow batch updating
+ lambdas.init_vector(&dense_weights);
+ dense_w_local = dense_weights;
+ decoder.SetId(cur_sent);
+ decoder.Decode(buf, &observer); // decode the sentence, calling Notify to get the hope,fear, and model best hyps.
+
+ cur_sent = observer.GetCurrentSent();
+ cerr << "SENT: " << cur_sent << endl;
+ const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis();
+ const HypothesisInfo& cur_good = *oracles[cur_sent].good[0];
+ const HypothesisInfo& cur_bad = *oracles[cur_sent].bad[0];
+
+ vector<shared_ptr<HypothesisInfo> >& cur_good_v = oracles[cur_sent].good;
+ vector<shared_ptr<HypothesisInfo> >& cur_bad_v = oracles[cur_sent].bad;
+ vector<shared_ptr<HypothesisInfo> > cur_best_v = observer.GetCurrentBest();
+
+ tot_loss += cur_hyp.mt_metric;
+
+ //score hyps to be able to compute corpus level bleu after we finish this iteration through the corpus
+ ScoreP sentscore = ds[cur_sent]->ScoreCandidate(cur_hyp.hyp);
+ if (!acc) { acc = sentscore->GetZero(); }
+ acc->PlusEquals(*sentscore);
+
+ ScoreP hope_sentscore = ds[cur_sent]->ScoreCandidate(cur_good.hyp);
+ if (!acc_h) { acc_h = hope_sentscore->GetZero(); }
+ acc_h->PlusEquals(*hope_sentscore);
+
+ ScoreP fear_sentscore = ds[cur_sent]->ScoreCandidate(cur_bad.hyp);
+ if (!acc_f) { acc_f = fear_sentscore->GetZero(); }
+ acc_f->PlusEquals(*fear_sentscore);
+
+ if(optimizer == 4) { //passive-aggresive update (single dual coordinate step)
+
+ double margin = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights);
+ double mt_loss = (cur_good.mt_metric - cur_bad.mt_metric);
+ const double loss = margin + mt_loss;
+ cerr << "LOSS: " << loss << " Margin:" << margin << " BLEUL:" << mt_loss << " " << cur_bad.features.dot(dense_weights) << " " << cur_good.features.dot(dense_weights) <<endl;
+ if (loss > 0.0 || !checkloss) {
+ SparseVector<double> diff = cur_good.features;
+ diff -= cur_bad.features;
+
+ double diffsqnorm = diff.l2norm_sq();
+ double delta;
+ if (diffsqnorm > 0)
+ delta = loss / (diffsqnorm);
+ else
+ delta = 0;
+
+ if (delta > max_step_size) delta = max_step_size;
+ lambdas += (cur_good.features * delta);
+ lambdas -= (cur_bad.features * delta);
+
+ }
+ }
+ else if(optimizer == 1) //sgd - nonadapted step size
+ {
+
+ lambdas += (cur_good.features) * max_step_size;
+ lambdas -= (cur_bad.features) * max_step_size;
+ }
+ else if(optimizer == 5) //full mira with n-best list of constraints from hope, fear, model best
+ {
+ vector<shared_ptr<HypothesisInfo> > cur_constraint;
+ cur_constraint.insert(cur_constraint.begin(), cur_bad_v.begin(), cur_bad_v.end());
+ cur_constraint.insert(cur_constraint.begin(), cur_best_v.begin(), cur_best_v.end());
+ cur_constraint.insert(cur_constraint.begin(), cur_good_v.begin(), cur_good_v.end());
+
+ bool optimize_again;
+ vector<shared_ptr<HypothesisInfo> > cur_pair;
+ //SMO
+ for(int u=0;u!=cur_constraint.size();u++)
+ cur_constraint[u]->alpha =0;
+
+ cur_constraint[0]->alpha =1; //set oracle to alpha=1
+
+ cerr <<"Optimizing with " << cur_constraint.size() << " constraints" << endl;
+ int smo_iter = MAX_SMO, smo_iter2 = MAX_SMO;
+ int iter, iter2 =0;
+ bool DEBUG_SMO = false;
+ while (iter2 < smo_iter2)
+ {
+ iter =0;
+ while (iter < smo_iter)
+ {
+ optimize_again = true;
+ for (int i = 0; i< cur_constraint.size(); i++)
+ for (int j = i+1; j< cur_constraint.size(); j++)
+ {
+ if(DEBUG_SMO) cerr << "start " << i << " " << j << endl;
+ cur_pair.clear();
+ cur_pair.push_back(cur_constraint[j]);
+ cur_pair.push_back(cur_constraint[i]);
+ double delta = ComputeDelta(&cur_pair,max_step_size, dense_weights);
+
+ if (delta == 0) optimize_again = false;
+ cur_constraint[j]->alpha += delta;
+ cur_constraint[i]->alpha -= delta;
+ double step_size = delta * max_step_size;
+
+ lambdas += (cur_constraint[i]->features) * step_size;
+ lambdas -= (cur_constraint[j]->features) * step_size;
+ if(DEBUG_SMO) cerr << "SMO opt " << iter << " " << i << " " << j << " " << delta << " " << cur_pair[0]->alpha << " " << cur_pair[1]->alpha << endl;
+ }
+ iter++;
+
+ if(!optimize_again)
+ {
+ iter = MAX_SMO;
+ cerr << "Optimization stopped, delta =0" << endl;
+ }
+ }
+ iter2++;
+ }
+ }
+ else if(optimizer == 2 || optimizer == 3) //PA and Cutting Plane MIRA update
+ {
+ bool DEBUG_SMO= true;
+ vector<shared_ptr<HypothesisInfo> > cur_constraint;
+ cur_constraint.push_back(cur_good_v[0]); //add oracle to constraint set
+ bool optimize_again = true;
+ int cut_plane_calls = 0;
+ while (optimize_again)
+ {
+ if(DEBUG_SMO) cerr<< "optimize again: " << optimize_again << endl;
+ if(optimizer == 2){ //PA
+ cur_constraint.push_back(cur_bad_v[0]);
+
+ //check if we have a violation
+ if(!(cur_constraint[1]->fear > cur_constraint[0]->fear + SMO_EPSILON))
+ {
+ optimize_again = false;
+ cerr << "Constraint not violated" << endl;
+ }
+ }
+ else
+ { //cutting plane to add constraints
+ if(DEBUG_SMO) cerr<< "Cutting Plane " << cut_plane_calls << " with " << lambdas << endl;
+ optimize_again = false;
+ cut_plane_calls++;
+ CuttingPlane(&cur_constraint, &optimize_again, oracles[cur_sent].bad, dense_weights);
+ if (cut_plane_calls >= MAX_SMO) optimize_again = false;
+ }
+
+ if(optimize_again)
+ {
+ //SMO
+ for(int u=0;u!=cur_constraint.size();u++)
+ {
+ cur_constraint[u]->alpha =0;
+ }
+ cur_constraint[0]->alpha = 1;
+ cerr <<" Optimizing with " << cur_constraint.size() << " constraints" << endl;
+ int smo_iter = MAX_SMO;
+ int iter =0;
+ while (iter < smo_iter)
+ {
+ //select pair to optimize from constraint set
+ vector<shared_ptr<HypothesisInfo> > cur_pair = SelectPair(&cur_constraint);
+
+ if(cur_pair.empty()){
+ iter=MAX_SMO;
+ cerr << "Undefined pair " << endl;
+ continue;
+ } //pair is undefined so we are done with this smo
+
+ double delta = ComputeDelta(&cur_pair,max_step_size, dense_weights);
+
+ cur_pair[0]->alpha += delta;
+ cur_pair[1]->alpha -= delta;
+ double step_size = delta * max_step_size;
+ cerr << "step " << step_size << endl;
+
+ lambdas += (cur_pair[1]->features) * step_size;
+ lambdas -= (cur_pair[0]->features) * step_size;
+ cerr << " Lambdas " << lambdas << endl;
+ //reload weights based on update
+
+ dense_weights.clear();
+ lambdas.init_vector(&dense_weights);
+ dense_w_local = dense_weights;
+ iter++;
+
+ if(DEBUG_SMO) cerr << "SMO opt " << iter << " " << delta << " " << cur_pair[0]->alpha << " " << cur_pair[1]->alpha << endl;
+ if(no_select) //don't use selection heuristic to determine when to stop SMO, rather just when delta =0
+ if (delta == 0) iter = MAX_SMO;
+
+ //only perform one dual coordinate ascent step
+ if(optimizer == 2)
+ {
+ optimize_again = false;
+ iter = MAX_SMO;
+ }
+ }
+ if(optimizer == 3)
+ {
+ if(!no_reweight) //reweight the forest and select a new k-best
+ {
+ if(DEBUG_SMO) cerr<< "Decoding with new weights -- now orac are " << oracles[cur_sent].good.size() << endl;
+ Hypergraph hg = observer.GetCurrentForest();
+ hg.Reweight(dense_weights);
+ if(unique_kbest)
+ observer.UpdateOracles<KBest::FilterUnique>(cur_sent, hg);
+ else
+ observer.UpdateOracles<KBest::NoFilter<std::vector<WordID> > >(cur_sent, hg);
+ }
+ }
+ }
+
+ }
+
+ //print objective after this sentence
+ double lambda_change = (lambdas - old_lambdas).l2norm_sq();
+ double max_fear = cur_constraint[cur_constraint.size()-1]->fear;
+ double temp_objective = 0.5 * lambda_change;// + max_step_size * max_fear;
+
+ for(int u=0;u!=cur_constraint.size();u++)
+ {
+ cerr << cur_constraint[u]->alpha << " " << cur_constraint[u]->hope << " " << cur_constraint[u]->fear << endl;
+ temp_objective += cur_constraint[u]->alpha * cur_constraint[u]->fear;
+ }
+ objective += temp_objective;
+
+ cerr << "SENT OBJ: " << temp_objective << " NEW OBJ: " << objective << endl;
+ }
+
+
+ if ((cur_sent * 40 / ds.size()) > dots) { ++dots; cerr << '.'; }
+ tot += lambdas;
+ ++lcount;
+ cur_sent++;
+
+ cout << TD::GetString(cur_good_v[0]->hyp) << " ||| " << TD::GetString(cur_best_v[0]->hyp) << " ||| " << TD::GetString(cur_bad_v[0]->hyp) << endl;
+
+ }
+
+ cerr << "FINAL OBJECTIVE: "<< objective << endl;
+ final_tot += tot;
+ cerr << "Translated " << lcount << " sentences " << endl;
+ cerr << " [AVG METRIC LAST PASS=" << (tot_loss / lcount) << "]\n";
+ tot_loss = 0;
+
+ int node_id = rng->next() * 100000;
+ cerr << " Writing weights to " << node_id << endl;
+ Weights::ShowLargestFeatures(dense_weights);
+ dots = 0;
+ ostringstream os;
+ os << weights_dir << "/weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "." << node_id << ".gz";
+ string msg = "# MIRA tuned weights ||| " + boost::lexical_cast<std::string>(node_id) + " ||| " + boost::lexical_cast<std::string>(lcount);
+ lambdas.init_vector(&dense_weights);
+ Weights::WriteToFile(os.str(), dense_weights, true, &msg);
+
+ SparseVector<double> x = tot;
+ x /= lcount+1;
+ ostringstream sa;
+ string msga = "# MIRA tuned weights AVERAGED ||| " + boost::lexical_cast<std::string>(node_id) + " ||| " + boost::lexical_cast<std::string>(lcount);
+ sa << weights_dir << "/weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "." << node_id << "-avg.gz";
+ x.init_vector(&dense_weights);
+ Weights::WriteToFile(sa.str(), dense_weights, true, &msga);
+
+ cerr << "Optimization complete.\n";
+ return 0;
+}
+