summaryrefslogtreecommitdiff
path: root/training/minrisk/minrisk_optimize.cc
diff options
context:
space:
mode:
authorMichael Denkowski <michael.j.denkowski@gmail.com>2012-12-22 16:01:23 -0500
committerMichael Denkowski <michael.j.denkowski@gmail.com>2012-12-22 16:01:23 -0500
commit597d89c11db53e91bc011eab70fd613bbe6453e8 (patch)
tree83c87c07d1ff6d3ee4e3b1626f7eddd49c61095b /training/minrisk/minrisk_optimize.cc
parent65e958ff2678a41c22be7171456a63f002ef370b (diff)
parent201af2acd394415a05072fbd53d42584875aa4b4 (diff)
Merge branch 'master' of git://github.com/redpony/cdec
Diffstat (limited to 'training/minrisk/minrisk_optimize.cc')
-rw-r--r--training/minrisk/minrisk_optimize.cc197
1 files changed, 197 insertions, 0 deletions
diff --git a/training/minrisk/minrisk_optimize.cc b/training/minrisk/minrisk_optimize.cc
new file mode 100644
index 00000000..da8b5260
--- /dev/null
+++ b/training/minrisk/minrisk_optimize.cc
@@ -0,0 +1,197 @@
+#include <sstream>
+#include <iostream>
+#include <vector>
+#include <limits>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "liblbfgs/lbfgs++.h"
+#include "filelib.h"
+#include "stringlib.h"
+#include "weights.h"
+#include "hg_io.h"
+#include "kbest.h"
+#include "viterbi.h"
+#include "ns.h"
+#include "ns_docscorer.h"
+#include "candidate_set.h"
+#include "risk.h"
+#include "entropy.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
+ ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
+ ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
+ ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
+ ("temperature,T",po::value<double>()->default_value(0.0), "Temperature parameter for objective (>0 increases the entropy)")
+ ("l1_strength,C",po::value<double>()->default_value(0.0), "L1 regularization strength")
+ ("memory_buffers,M",po::value<unsigned>()->default_value(20), "Memory buffers used in LBFGS")
+ ("kbest_repository,R",po::value<string>(), "Accumulate k-best lists from previous iterations (parameter is path to repository)")
+ ("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract")
+ ("help,h", "Help");
+ po::options_description dcmdline_options;
+ dcmdline_options.add(opts);
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ bool flag = false;
+ if (!conf->count("reference")) {
+ cerr << "Please specify one or more references using -r <REF.TXT>\n";
+ flag = true;
+ }
+ if (!conf->count("weights")) {
+ cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
+ flag = true;
+ }
+ if (flag || conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+EvaluationMetric* metric = NULL;
+
+struct RiskObjective {
+ explicit RiskObjective(const vector<training::CandidateSet>& tr, const double temp) : training(tr), T(temp) {}
+ double operator()(const vector<double>& x, double* g) const {
+ fill(g, g + x.size(), 0.0);
+ double obj = 0;
+ double h = 0;
+ for (unsigned i = 0; i < training.size(); ++i) {
+ training::CandidateSetRisk risk(training[i], *metric);
+ training::CandidateSetEntropy entropy(training[i]);
+ SparseVector<double> tg, hg;
+ double r = risk(x, &tg);
+ double hh = entropy(x, &hg);
+ h += hh;
+ obj += r;
+ for (SparseVector<double>::iterator it = tg.begin(); it != tg.end(); ++it)
+ g[it->first] += it->second;
+ if (T) {
+ for (SparseVector<double>::iterator it = hg.begin(); it != hg.end(); ++it)
+ g[it->first] += T * it->second;
+ }
+ }
+ cerr << (1-(obj / training.size())) << " H=" << h << endl;
+ return obj - T * h;
+ }
+ const vector<training::CandidateSet>& training;
+ const double T; // temperature for entropy regularization
+};
+
+double LearnParameters(const vector<training::CandidateSet>& training,
+ const double temp, // > 0 increases the entropy, < 0 decreases the entropy
+ const double C1,
+ const unsigned memory_buffers,
+ vector<weight_t>* px) {
+ RiskObjective obj(training, temp);
+ LBFGS<RiskObjective> lbfgs(px, obj, memory_buffers, C1);
+ lbfgs.MinimizeFunction();
+ return 0;
+}
+
+#if 0
+struct FooLoss {
+ double operator()(const vector<double>& x, double* g) const {
+ fill(g, g + x.size(), 0.0);
+ training::CandidateSet cs;
+ training::CandidateSetEntropy cse(cs);
+ cs.cs.resize(3);
+ cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0);
+ cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0);
+ cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0);
+ cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5);
+ SparseVector<double> xx;
+ double h = cse(x, &xx);
+ cerr << cse(x, &xx) << endl; cerr << "G: " << xx << endl;
+ for (SparseVector<double>::iterator i = xx.begin(); i != xx.end(); ++i)
+ g[i->first] += i->second;
+ return -h;
+ }
+};
+#endif
+
+int main(int argc, char** argv) {
+#if 0
+ training::CandidateSet cs;
+ training::CandidateSetEntropy cse(cs);
+ cs.cs.resize(3);
+ cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0);
+ cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0);
+ cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0);
+ cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5);
+ FooLoss foo;
+ vector<double> ww(FD::NumFeats()); ww[FD::Convert("F1")] = 1.0;
+ LBFGS<FooLoss> lbfgs(&ww, foo, 100, 0.0);
+ lbfgs.MinimizeFunction();
+ return 1;
+#endif
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const string evaluation_metric = conf["evaluation_metric"].as<string>();
+
+ metric = EvaluationMetric::Instance(evaluation_metric);
+ DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
+ cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;
+
+ Hypergraph hg;
+ string last_file;
+ ReadFile in_read(conf["input"].as<string>());
+ string kbest_repo;
+ if (conf.count("kbest_repository")) {
+ kbest_repo = conf["kbest_repository"].as<string>();
+ MkDirP(kbest_repo);
+ }
+ istream &in=*in_read.stream();
+ const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
+ vector<weight_t> weights;
+ const string weightsf = conf["weights"].as<string>();
+ Weights::InitFromFile(weightsf, &weights);
+ double t = 0;
+ for (unsigned i = 0; i < weights.size(); ++i)
+ t += weights[i] * weights[i];
+ if (t > 0) {
+ for (unsigned i = 0; i < weights.size(); ++i)
+ weights[i] /= sqrt(t);
+ }
+ string line, file;
+ vector<training::CandidateSet> kis;
+ cerr << "Loading hypergraphs...\n";
+ while(getline(in, line)) {
+ istringstream is(line);
+ int sent_id;
+ kis.resize(kis.size() + 1);
+ training::CandidateSet& curkbest = kis.back();
+ string kbest_file;
+ if (kbest_repo.size()) {
+ ostringstream os;
+ os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
+ kbest_file = os.str();
+ if (FileExists(kbest_file))
+ curkbest.ReadFromFile(kbest_file);
+ }
+ is >> file >> sent_id;
+ ReadFile rf(file);
+ if (kis.size() % 5 == 0) { cerr << '.'; }
+ if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; }
+ HypergraphIO::ReadFromJSON(rf.stream(), &hg);
+ hg.Reweight(weights);
+ curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]);
+ if (kbest_file.size())
+ curkbest.WriteToFile(kbest_file);
+ }
+ cerr << "\nHypergraphs loaded.\n";
+ weights.resize(FD::NumFeats());
+
+ double c1 = conf["l1_strength"].as<double>();
+ double temp = conf["temperature"].as<double>();
+ unsigned m = conf["memory_buffers"].as<unsigned>();
+ LearnParameters(kis, temp, c1, m, &weights);
+ Weights::WriteToFile("-", weights);
+ return 0;
+}
+