diff options
author | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-05-13 03:35:30 +0200 |
---|---|---|
committer | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-05-13 03:35:30 +0200 |
commit | 670a8f984fc6d8342180c59ae9e96b0b76f34d3d (patch) | |
tree | 9f2ce7eec1a77e56b3bb1ad0ad40f212d7a996b0 /training/liblbfgs/lbfgs.h | |
parent | eb3ee28dc0eb1d3e5ed01ba0df843be329ae450d (diff) | |
parent | 2f64af3e06a518b93f7ca2c30a9d0aeb2c947031 (diff) |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'training/liblbfgs/lbfgs.h')
-rw-r--r-- | training/liblbfgs/lbfgs.h | 745 |
1 files changed, 745 insertions, 0 deletions
diff --git a/training/liblbfgs/lbfgs.h b/training/liblbfgs/lbfgs.h new file mode 100644 index 00000000..cd944a33 --- /dev/null +++ b/training/liblbfgs/lbfgs.h @@ -0,0 +1,745 @@ +/* + * C library of Limited memory BFGS (L-BFGS). + * + * Copyright (c) 1990, Jorge Nocedal + * Copyright (c) 2007-2010 Naoaki Okazaki + * All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +/* $Id$ */ + +#ifndef __LBFGS_H__ +#define __LBFGS_H__ + +#ifdef __cplusplus +extern "C" { +#endif/*__cplusplus*/ + +/* + * The default precision of floating point values is 64bit (double). + */ +#ifndef LBFGS_FLOAT +#define LBFGS_FLOAT 64 +#endif/*LBFGS_FLOAT*/ + +/* + * Activate optimization routines for IEEE754 floating point values. + */ +#ifndef LBFGS_IEEE_FLOAT +#define LBFGS_IEEE_FLOAT 1 +#endif/*LBFGS_IEEE_FLOAT*/ + +#if LBFGS_FLOAT == 32 +typedef float lbfgsfloatval_t; + +#elif LBFGS_FLOAT == 64 +typedef double lbfgsfloatval_t; + +#else +#error "libLBFGS supports single (float; LBFGS_FLOAT = 32) or double (double; LBFGS_FLOAT=64) precision only." + +#endif + + +/** + * \addtogroup liblbfgs_api libLBFGS API + * @{ + * + * The libLBFGS API. + */ + +/** + * Return values of lbfgs(). + * + * Roughly speaking, a negative value indicates an error. + */ +enum { + /** L-BFGS reaches convergence. */ + LBFGS_SUCCESS = 0, + LBFGS_CONVERGENCE = 0, + LBFGS_STOP, + /** The initial variables already minimize the objective function. */ + LBFGS_ALREADY_MINIMIZED, + + /** Unknown error. */ + LBFGSERR_UNKNOWNERROR = -1024, + /** Logic error. */ + LBFGSERR_LOGICERROR, + /** Insufficient memory. */ + LBFGSERR_OUTOFMEMORY, + /** The minimization process has been canceled. */ + LBFGSERR_CANCELED, + /** Invalid number of variables specified. */ + LBFGSERR_INVALID_N, + /** Invalid number of variables (for SSE) specified. */ + LBFGSERR_INVALID_N_SSE, + /** The array x must be aligned to 16 (for SSE). */ + LBFGSERR_INVALID_X_SSE, + /** Invalid parameter lbfgs_parameter_t::epsilon specified. */ + LBFGSERR_INVALID_EPSILON, + /** Invalid parameter lbfgs_parameter_t::past specified. */ + LBFGSERR_INVALID_TESTPERIOD, + /** Invalid parameter lbfgs_parameter_t::delta specified. */ + LBFGSERR_INVALID_DELTA, + /** Invalid parameter lbfgs_parameter_t::linesearch specified. */ + LBFGSERR_INVALID_LINESEARCH, + /** Invalid parameter lbfgs_parameter_t::max_step specified. */ + LBFGSERR_INVALID_MINSTEP, + /** Invalid parameter lbfgs_parameter_t::max_step specified. */ + LBFGSERR_INVALID_MAXSTEP, + /** Invalid parameter lbfgs_parameter_t::ftol specified. */ + LBFGSERR_INVALID_FTOL, + /** Invalid parameter lbfgs_parameter_t::wolfe specified. */ + LBFGSERR_INVALID_WOLFE, + /** Invalid parameter lbfgs_parameter_t::gtol specified. */ + LBFGSERR_INVALID_GTOL, + /** Invalid parameter lbfgs_parameter_t::xtol specified. */ + LBFGSERR_INVALID_XTOL, + /** Invalid parameter lbfgs_parameter_t::max_linesearch specified. */ + LBFGSERR_INVALID_MAXLINESEARCH, + /** Invalid parameter lbfgs_parameter_t::orthantwise_c specified. */ + LBFGSERR_INVALID_ORTHANTWISE, + /** Invalid parameter lbfgs_parameter_t::orthantwise_start specified. */ + LBFGSERR_INVALID_ORTHANTWISE_START, + /** Invalid parameter lbfgs_parameter_t::orthantwise_end specified. */ + LBFGSERR_INVALID_ORTHANTWISE_END, + /** The line-search step went out of the interval of uncertainty. */ + LBFGSERR_OUTOFINTERVAL, + /** A logic error occurred; alternatively, the interval of uncertainty + became too small. */ + LBFGSERR_INCORRECT_TMINMAX, + /** A rounding error occurred; alternatively, no line-search step + satisfies the sufficient decrease and curvature conditions. */ + LBFGSERR_ROUNDING_ERROR, + /** The line-search step became smaller than lbfgs_parameter_t::min_step. */ + LBFGSERR_MINIMUMSTEP, + /** The line-search step became larger than lbfgs_parameter_t::max_step. */ + LBFGSERR_MAXIMUMSTEP, + /** The line-search routine reaches the maximum number of evaluations. */ + LBFGSERR_MAXIMUMLINESEARCH, + /** The algorithm routine reaches the maximum number of iterations. */ + LBFGSERR_MAXIMUMITERATION, + /** Relative width of the interval of uncertainty is at most + lbfgs_parameter_t::xtol. */ + LBFGSERR_WIDTHTOOSMALL, + /** A logic error (negative line-search step) occurred. */ + LBFGSERR_INVALIDPARAMETERS, + /** The current search direction increases the objective function value. */ + LBFGSERR_INCREASEGRADIENT, +}; + +/** + * Line search algorithms. + */ +enum { + /** The default algorithm (MoreThuente method). */ + LBFGS_LINESEARCH_DEFAULT = 0, + /** MoreThuente method proposd by More and Thuente. */ + LBFGS_LINESEARCH_MORETHUENTE = 0, + /** + * Backtracking method with the Armijo condition. + * The backtracking method finds the step length such that it satisfies + * the sufficient decrease (Armijo) condition, + * - f(x + a * d) <= f(x) + lbfgs_parameter_t::ftol * a * g(x)^T d, + * + * where x is the current point, d is the current search direction, and + * a is the step length. + */ + LBFGS_LINESEARCH_BACKTRACKING_ARMIJO = 1, + /** The backtracking method with the defualt (regular Wolfe) condition. */ + LBFGS_LINESEARCH_BACKTRACKING = 2, + /** + * Backtracking method with regular Wolfe condition. + * The backtracking method finds the step length such that it satisfies + * both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO) + * and the curvature condition, + * - g(x + a * d)^T d >= lbfgs_parameter_t::wolfe * g(x)^T d, + * + * where x is the current point, d is the current search direction, and + * a is the step length. + */ + LBFGS_LINESEARCH_BACKTRACKING_WOLFE = 2, + /** + * Backtracking method with strong Wolfe condition. + * The backtracking method finds the step length such that it satisfies + * both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO) + * and the following condition, + * - |g(x + a * d)^T d| <= lbfgs_parameter_t::wolfe * |g(x)^T d|, + * + * where x is the current point, d is the current search direction, and + * a is the step length. + */ + LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 3, +}; + +/** + * L-BFGS optimization parameters. + * Call lbfgs_parameter_init() function to initialize parameters to the + * default values. + */ +typedef struct { + /** + * The number of corrections to approximate the inverse hessian matrix. + * The L-BFGS routine stores the computation results of previous \ref m + * iterations to approximate the inverse hessian matrix of the current + * iteration. This parameter controls the size of the limited memories + * (corrections). The default value is \c 6. Values less than \c 3 are + * not recommended. Large values will result in excessive computing time. + */ + int m; + + /** + * Epsilon for convergence test. + * This parameter determines the accuracy with which the solution is to + * be found. A minimization terminates when + * ||g|| < \ref epsilon * max(1, ||x||), + * where ||.|| denotes the Euclidean (L2) norm. The default value is + * \c 1e-5. + */ + lbfgsfloatval_t epsilon; + + /** + * Distance for delta-based convergence test. + * This parameter determines the distance, in iterations, to compute + * the rate of decrease of the objective function. If the value of this + * parameter is zero, the library does not perform the delta-based + * convergence test. The default value is \c 0. + */ + int past; + + /** + * Delta for convergence test. + * This parameter determines the minimum rate of decrease of the + * objective function. The library stops iterations when the + * following condition is met: + * (f' - f) / f < \ref delta, + * where f' is the objective value of \ref past iterations ago, and f is + * the objective value of the current iteration. + * The default value is \c 0. + */ + lbfgsfloatval_t delta; + + /** + * The maximum number of iterations. + * The lbfgs() function terminates an optimization process with + * ::LBFGSERR_MAXIMUMITERATION status code when the iteration count + * exceedes this parameter. Setting this parameter to zero continues an + * optimization process until a convergence or error. The default value + * is \c 0. + */ + int max_iterations; + + /** + * The line search algorithm. + * This parameter specifies a line search algorithm to be used by the + * L-BFGS routine. + */ + int linesearch; + + /** + * The maximum number of trials for the line search. + * This parameter controls the number of function and gradients evaluations + * per iteration for the line search routine. The default value is \c 20. + */ + int max_linesearch; + + /** + * The minimum step of the line search routine. + * The default value is \c 1e-20. This value need not be modified unless + * the exponents are too large for the machine being used, or unless the + * problem is extremely badly scaled (in which case the exponents should + * be increased). + */ + lbfgsfloatval_t min_step; + + /** + * The maximum step of the line search. + * The default value is \c 1e+20. This value need not be modified unless + * the exponents are too large for the machine being used, or unless the + * problem is extremely badly scaled (in which case the exponents should + * be increased). + */ + lbfgsfloatval_t max_step; + + /** + * A parameter to control the accuracy of the line search routine. + * The default value is \c 1e-4. This parameter should be greater + * than zero and smaller than \c 0.5. + */ + lbfgsfloatval_t ftol; + + /** + * A coefficient for the Wolfe condition. + * This parameter is valid only when the backtracking line-search + * algorithm is used with the Wolfe condition, + * ::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE or + * ::LBFGS_LINESEARCH_BACKTRACKING_WOLFE . + * The default value is \c 0.9. This parameter should be greater + * the \ref ftol parameter and smaller than \c 1.0. + */ + lbfgsfloatval_t wolfe; + + /** + * A parameter to control the accuracy of the line search routine. + * The default value is \c 0.9. If the function and gradient + * evaluations are inexpensive with respect to the cost of the + * iteration (which is sometimes the case when solving very large + * problems) it may be advantageous to set this parameter to a small + * value. A typical small value is \c 0.1. This parameter shuold be + * greater than the \ref ftol parameter (\c 1e-4) and smaller than + * \c 1.0. + */ + lbfgsfloatval_t gtol; + + /** + * The machine precision for floating-point values. + * This parameter must be a positive value set by a client program to + * estimate the machine precision. The line search routine will terminate + * with the status code (::LBFGSERR_ROUNDING_ERROR) if the relative width + * of the interval of uncertainty is less than this parameter. + */ + lbfgsfloatval_t xtol; + + /** + * Coeefficient for the L1 norm of variables. + * This parameter should be set to zero for standard minimization + * problems. Setting this parameter to a positive value activates + * Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method, which + * minimizes the objective function F(x) combined with the L1 norm |x| + * of the variables, {F(x) + C |x|}. This parameter is the coeefficient + * for the |x|, i.e., C. As the L1 norm |x| is not differentiable at + * zero, the library modifies function and gradient evaluations from + * a client program suitably; a client program thus have only to return + * the function value F(x) and gradients G(x) as usual. The default value + * is zero. + */ + lbfgsfloatval_t orthantwise_c; + + /** + * Start index for computing L1 norm of the variables. + * This parameter is valid only for OWL-QN method + * (i.e., \ref orthantwise_c != 0). This parameter b (0 <= b < N) + * specifies the index number from which the library computes the + * L1 norm of the variables x, + * |x| := |x_{b}| + |x_{b+1}| + ... + |x_{N}| . + * In other words, variables x_1, ..., x_{b-1} are not used for + * computing the L1 norm. Setting b (0 < b < N), one can protect + * variables, x_1, ..., x_{b-1} (e.g., a bias term of logistic + * regression) from being regularized. The default value is zero. + */ + int orthantwise_start; + + /** + * End index for computing L1 norm of the variables. + * This parameter is valid only for OWL-QN method + * (i.e., \ref orthantwise_c != 0). This parameter e (0 < e <= N) + * specifies the index number at which the library stops computing the + * L1 norm of the variables x, + */ + int orthantwise_end; +} lbfgs_parameter_t; + + +/** + * Callback interface to provide objective function and gradient evaluations. + * + * The lbfgs() function call this function to obtain the values of objective + * function and its gradients when needed. A client program must implement + * this function to evaluate the values of the objective function and its + * gradients, given current values of variables. + * + * @param instance The user data sent for lbfgs() function by the client. + * @param x The current values of variables. + * @param g The gradient vector. The callback function must compute + * the gradient values for the current variables. + * @param n The number of variables. + * @param step The current step of the line search routine. + * @retval lbfgsfloatval_t The value of the objective function for the current + * variables. + */ +typedef lbfgsfloatval_t (*lbfgs_evaluate_t)( + void *instance, + const lbfgsfloatval_t *x, + lbfgsfloatval_t *g, + const int n, + const lbfgsfloatval_t step + ); + +/** + * Callback interface to receive the progress of the optimization process. + * + * The lbfgs() function call this function for each iteration. Implementing + * this function, a client program can store or display the current progress + * of the optimization process. + * + * @param instance The user data sent for lbfgs() function by the client. + * @param x The current values of variables. + * @param g The current gradient values of variables. + * @param fx The current value of the objective function. + * @param xnorm The Euclidean norm of the variables. + * @param gnorm The Euclidean norm of the gradients. + * @param step The line-search step used for this iteration. + * @param n The number of variables. + * @param k The iteration count. + * @param ls The number of evaluations called for this iteration. + * @retval int Zero to continue the optimization process. Returning a + * non-zero value will cancel the optimization process. + */ +typedef int (*lbfgs_progress_t)( + void *instance, + const lbfgsfloatval_t *x, + const lbfgsfloatval_t *g, + const lbfgsfloatval_t fx, + const lbfgsfloatval_t xnorm, + const lbfgsfloatval_t gnorm, + const lbfgsfloatval_t step, + int n, + int k, + int ls + ); + +/* +A user must implement a function compatible with ::lbfgs_evaluate_t (evaluation +callback) and pass the pointer to the callback function to lbfgs() arguments. +Similarly, a user can implement a function compatible with ::lbfgs_progress_t +(progress callback) to obtain the current progress (e.g., variables, function +value, ||G||, etc) and to cancel the iteration process if necessary. +Implementation of a progress callback is optional: a user can pass \c NULL if +progress notification is not necessary. + +In addition, a user must preserve two requirements: + - The number of variables must be multiples of 16 (this is not 4). + - The memory block of variable array ::x must be aligned to 16. + +This algorithm terminates an optimization +when: + + ||G|| < \epsilon \cdot \max(1, ||x||) . + +In this formula, ||.|| denotes the Euclidean norm. +*/ + +/** + * Start a L-BFGS optimization. + * + * @param n The number of variables. + * @param x The array of variables. A client program can set + * default values for the optimization and receive the + * optimization result through this array. This array + * must be allocated by ::lbfgs_malloc function + * for libLBFGS built with SSE/SSE2 optimization routine + * enabled. The library built without SSE/SSE2 + * optimization does not have such a requirement. + * @param ptr_fx The pointer to the variable that receives the final + * value of the objective function for the variables. + * This argument can be set to \c NULL if the final + * value of the objective function is unnecessary. + * @param proc_evaluate The callback function to provide function and + * gradient evaluations given a current values of + * variables. A client program must implement a + * callback function compatible with \ref + * lbfgs_evaluate_t and pass the pointer to the + * callback function. + * @param proc_progress The callback function to receive the progress + * (the number of iterations, the current value of + * the objective function) of the minimization + * process. This argument can be set to \c NULL if + * a progress report is unnecessary. + * @param instance A user data for the client program. The callback + * functions will receive the value of this argument. + * @param param The pointer to a structure representing parameters for + * L-BFGS optimization. A client program can set this + * parameter to \c NULL to use the default parameters. + * Call lbfgs_parameter_init() function to fill a + * structure with the default values. + * @retval int The status code. This function returns zero if the + * minimization process terminates without an error. A + * non-zero value indicates an error. + */ +int lbfgs( + int n, + lbfgsfloatval_t *x, + lbfgsfloatval_t *ptr_fx, + lbfgs_evaluate_t proc_evaluate, + lbfgs_progress_t proc_progress, + void *instance, + lbfgs_parameter_t *param + ); + +/** + * Initialize L-BFGS parameters to the default values. + * + * Call this function to fill a parameter structure with the default values + * and overwrite parameter values if necessary. + * + * @param param The pointer to the parameter structure. + */ +void lbfgs_parameter_init(lbfgs_parameter_t *param); + +/** + * Allocate an array for variables. + * + * This function allocates an array of variables for the convenience of + * ::lbfgs function; the function has a requreiemt for a variable array + * when libLBFGS is built with SSE/SSE2 optimization routines. A user does + * not have to use this function for libLBFGS built without SSE/SSE2 + * optimization. + * + * @param n The number of variables. + */ +lbfgsfloatval_t* lbfgs_malloc(int n); + +/** + * Free an array of variables. + * + * @param x The array of variables allocated by ::lbfgs_malloc + * function. + */ +void lbfgs_free(lbfgsfloatval_t *x); + +/** @} */ + +#ifdef __cplusplus +} +#endif/*__cplusplus*/ + + + +/** +@mainpage libLBFGS: a library of Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) + +@section intro Introduction + +This library is a C port of the implementation of Limited-memory +Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal. +The original FORTRAN source code is available at: +http://www.ece.northwestern.edu/~nocedal/lbfgs.html + +The L-BFGS method solves the unconstrainted minimization problem, + +<pre> + minimize F(x), x = (x1, x2, ..., xN), +</pre> + +only if the objective function F(x) and its gradient G(x) are computable. The +well-known Newton's method requires computation of the inverse of the hessian +matrix of the objective function. However, the computational cost for the +inverse hessian matrix is expensive especially when the objective function +takes a large number of variables. The L-BFGS method iteratively finds a +minimizer by approximating the inverse hessian matrix by information from last +m iterations. This innovation saves the memory storage and computational time +drastically for large-scaled problems. + +Among the various ports of L-BFGS, this library provides several features: +- <b>Optimization with L1-norm (Orthant-Wise Limited-memory Quasi-Newton + (OWL-QN) method)</b>: + In addition to standard minimization problems, the library can minimize + a function F(x) combined with L1-norm |x| of the variables, + {F(x) + C |x|}, where C is a constant scalar parameter. This feature is + useful for estimating parameters of sparse log-linear models (e.g., + logistic regression and maximum entropy) with L1-regularization (or + Laplacian prior). +- <b>Clean C code</b>: + Unlike C codes generated automatically by f2c (Fortran 77 into C converter), + this port includes changes based on my interpretations, improvements, + optimizations, and clean-ups so that the ported code would be well-suited + for a C code. In addition to comments inherited from the original code, + a number of comments were added through my interpretations. +- <b>Callback interface</b>: + The library receives function and gradient values via a callback interface. + The library also notifies the progress of the optimization by invoking a + callback function. In the original implementation, a user had to set + function and gradient values every time the function returns for obtaining + updated values. +- <b>Thread safe</b>: + The library is thread-safe, which is the secondary gain from the callback + interface. +- <b>Cross platform.</b> The source code can be compiled on Microsoft Visual + Studio 2010, GNU C Compiler (gcc), etc. +- <b>Configurable precision</b>: A user can choose single-precision (float) + or double-precision (double) accuracy by changing ::LBFGS_FLOAT macro. +- <b>SSE/SSE2 optimization</b>: + This library includes SSE/SSE2 optimization (written in compiler intrinsics) + for vector arithmetic operations on Intel/AMD processors. The library uses + SSE for float values and SSE2 for double values. The SSE/SSE2 optimization + routine is disabled by default. + +This library is used by: +- <a href="http://www.chokkan.org/software/crfsuite/">CRFsuite: A fast implementation of Conditional Random Fields (CRFs)</a> +- <a href="http://www.chokkan.org/software/classias/">Classias: A collection of machine-learning algorithms for classification</a> +- <a href="http://www.public.iastate.edu/~gdancik/mlegp/">mlegp: an R package for maximum likelihood estimates for Gaussian processes</a> +- <a href="http://infmath.uibk.ac.at/~matthiasf/imaging2/">imaging2: the imaging2 class library</a> +- <a href="http://search.cpan.org/~laye/Algorithm-LBFGS-0.16/">Algorithm::LBFGS - Perl extension for L-BFGS</a> +- <a href="http://www.cs.kuleuven.be/~bernd/yap-lbfgs/">YAP-LBFGS (an interface to call libLBFGS from YAP Prolog)</a> + +@section download Download + +- <a href="https://github.com/downloads/chokkan/liblbfgs/liblbfgs-1.10.tar.gz">Source code</a> +- <a href="https://github.com/chokkan/liblbfgs">GitHub repository</a> + +libLBFGS is distributed under the term of the +<a href="http://opensource.org/licenses/mit-license.php">MIT license</a>. + +@section changelog History +- Version 1.10 (2010-12-22): + - Fixed compiling errors on Mac OS X; this patch was kindly submitted by + Nic Schraudolph. + - Reduced compiling warnings on Mac OS X; this patch was kindly submitted + by Tamas Nepusz. + - Replaced memalign() with posix_memalign(). + - Updated solution and project files for Microsoft Visual Studio 2010. +- Version 1.9 (2010-01-29): + - Fixed a mistake in checking the validity of the parameters "ftol" and + "wolfe"; this was discovered by Kevin S. Van Horn. +- Version 1.8 (2009-07-13): + - Accepted the patch submitted by Takashi Imamichi; + the backtracking method now has three criteria for choosing the step + length: + - ::LBFGS_LINESEARCH_BACKTRACKING_ARMIJO: sufficient decrease (Armijo) + condition only + - ::LBFGS_LINESEARCH_BACKTRACKING_WOLFE: regular Wolfe condition + (sufficient decrease condition + curvature condition) + - ::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE: strong Wolfe condition + - Updated the documentation to explain the above three criteria. +- Version 1.7 (2009-02-28): + - Improved OWL-QN routines for stability. + - Removed the support of OWL-QN method in MoreThuente algorithm because + it accidentally fails in early stages of iterations for some objectives. + Because of this change, <b>the OW-LQN method must be used with the + backtracking algorithm (::LBFGS_LINESEARCH_BACKTRACKING)</b>, or the + library returns ::LBFGSERR_INVALID_LINESEARCH. + - Renamed line search algorithms as follows: + - ::LBFGS_LINESEARCH_BACKTRACKING: regular Wolfe condition. + - ::LBFGS_LINESEARCH_BACKTRACKING_LOOSE: regular Wolfe condition. + - ::LBFGS_LINESEARCH_BACKTRACKING_STRONG: strong Wolfe condition. + - Source code clean-up. +- Version 1.6 (2008-11-02): + - Improved line-search algorithm with strong Wolfe condition, which was + contributed by Takashi Imamichi. This routine is now default for + ::LBFGS_LINESEARCH_BACKTRACKING. The previous line search algorithm + with regular Wolfe condition is still available as + ::LBFGS_LINESEARCH_BACKTRACKING_LOOSE. + - Configurable stop index for L1-norm computation. A member variable + ::lbfgs_parameter_t::orthantwise_end was added to specify the index + number at which the library stops computing the L1 norm of the + variables. This is useful to prevent some variables from being + regularized by the OW-LQN method. + - A sample program written in C++ (sample/sample.cpp). +- Version 1.5 (2008-07-10): + - Configurable starting index for L1-norm computation. A member variable + ::lbfgs_parameter_t::orthantwise_start was added to specify the index + number from which the library computes the L1 norm of the variables. + This is useful to prevent some variables from being regularized by the + OWL-QN method. + - Fixed a zero-division error when the initial variables have already + been a minimizer (reported by Takashi Imamichi). In this case, the + library returns ::LBFGS_ALREADY_MINIMIZED status code. + - Defined ::LBFGS_SUCCESS status code as zero; removed unused constants, + LBFGSFALSE and LBFGSTRUE. + - Fixed a compile error in an implicit down-cast. +- Version 1.4 (2008-04-25): + - Configurable line search algorithms. A member variable + ::lbfgs_parameter_t::linesearch was added to choose either MoreThuente + method (::LBFGS_LINESEARCH_MORETHUENTE) or backtracking algorithm + (::LBFGS_LINESEARCH_BACKTRACKING). + - Fixed a bug: the previous version did not compute psuedo-gradients + properly in the line search routines for OWL-QN. This bug might quit + an iteration process too early when the OWL-QN routine was activated + (0 < ::lbfgs_parameter_t::orthantwise_c). + - Configure script for POSIX environments. + - SSE/SSE2 optimizations with GCC. + - New functions ::lbfgs_malloc and ::lbfgs_free to use SSE/SSE2 routines + transparently. It is uncessary to use these functions for libLBFGS built + without SSE/SSE2 routines; you can still use any memory allocators if + SSE/SSE2 routines are disabled in libLBFGS. +- Version 1.3 (2007-12-16): + - An API change. An argument was added to lbfgs() function to receive the + final value of the objective function. This argument can be set to + \c NULL if the final value is unnecessary. + - Fixed a null-pointer bug in the sample code (reported by Takashi Imamichi). + - Added build scripts for Microsoft Visual Studio 2005 and GCC. + - Added README file. +- Version 1.2 (2007-12-13): + - Fixed a serious bug in orthant-wise L-BFGS. + An important variable was used without initialization. +- Version 1.1 (2007-12-01): + - Implemented orthant-wise L-BFGS. + - Implemented lbfgs_parameter_init() function. + - Fixed several bugs. + - API documentation. +- Version 1.0 (2007-09-20): + - Initial release. + +@section api Documentation + +- @ref liblbfgs_api "libLBFGS API" + +@section sample Sample code + +@include sample.c + +@section ack Acknowledgements + +The L-BFGS algorithm is described in: + - Jorge Nocedal. + Updating Quasi-Newton Matrices with Limited Storage. + <i>Mathematics of Computation</i>, Vol. 35, No. 151, pp. 773--782, 1980. + - Dong C. Liu and Jorge Nocedal. + On the limited memory BFGS method for large scale optimization. + <i>Mathematical Programming</i> B, Vol. 45, No. 3, pp. 503-528, 1989. + +The line search algorithms used in this implementation are described in: + - John E. Dennis and Robert B. Schnabel. + <i>Numerical Methods for Unconstrained Optimization and Nonlinear + Equations</i>, Englewood Cliffs, 1983. + - Jorge J. More and David J. Thuente. + Line search algorithm with guaranteed sufficient decrease. + <i>ACM Transactions on Mathematical Software (TOMS)</i>, Vol. 20, No. 3, + pp. 286-307, 1994. + +This library also implements Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) +method presented in: + - Galen Andrew and Jianfeng Gao. + Scalable training of L1-regularized log-linear models. + In <i>Proceedings of the 24th International Conference on Machine + Learning (ICML 2007)</i>, pp. 33-40, 2007. + +Special thanks go to: + - Yoshimasa Tsuruoka and Daisuke Okanohara for technical information about + OWL-QN + - Takashi Imamichi for the useful enhancements of the backtracking method + - Kevin S. Van Horn, Nic Schraudolph, and Tamas Nepusz for bug fixes + +Finally I would like to thank the original author, Jorge Nocedal, who has been +distributing the effieicnt and explanatory implementation in an open source +licence. + +@section reference Reference + +- <a href="http://www.ece.northwestern.edu/~nocedal/lbfgs.html">L-BFGS</a> by Jorge Nocedal. +- <a href="http://research.microsoft.com/en-us/downloads/b1eb1016-1738-4bd5-83a9-370c9d498a03/default.aspx">Orthant-Wise Limited-memory Quasi-Newton Optimizer for L1-regularized Objectives</a> by Galen Andrew. +- <a href="http://chasen.org/~taku/software/misc/lbfgs/">C port (via f2c)</a> by Taku Kudo. +- <a href="http://www.alglib.net/optimization/lbfgs.php">C#/C++/Delphi/VisualBasic6 port</a> in ALGLIB. +- <a href="http://cctbx.sourceforge.net/">Computational Crystallography Toolbox</a> includes + <a href="http://cctbx.sourceforge.net/current_cvs/c_plus_plus/namespacescitbx_1_1lbfgs.html">scitbx::lbfgs</a>. +*/ + +#endif/*__LBFGS_H__*/ |