diff options
author | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
---|---|---|
committer | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
commit | 3d8d656fa7911524e0e6885647173474524e0784 (patch) | |
tree | 81b1ee2fcb67980376d03f0aa48e42e53abff222 /training/dtrain | |
parent | be7f57fdd484e063775d7abf083b9fa4c403b610 (diff) | |
parent | 96fedabebafe7a38a6d5928be8fff767e411d705 (diff) |
fixed conflicts
Diffstat (limited to 'training/dtrain')
54 files changed, 2447 insertions, 0 deletions
diff --git a/training/dtrain/Makefile.am b/training/dtrain/Makefile.am new file mode 100644 index 00000000..844c790d --- /dev/null +++ b/training/dtrain/Makefile.am @@ -0,0 +1,7 @@ +bin_PROGRAMS = dtrain + +dtrain_SOURCES = dtrain.cc score.cc dtrain.h kbestget.h ksampler.h pairsampling.h score.h +dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a + +AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval + diff --git a/training/dtrain/README.md b/training/dtrain/README.md new file mode 100644 index 00000000..2ab2f232 --- /dev/null +++ b/training/dtrain/README.md @@ -0,0 +1,30 @@ +This is a simple (and parallelizable) tuning method for cdec +which is able to train the weights of very many (sparse) features. +It was used here: + "Joint Feature Selection in Distributed Stochastic + Learning for Large-Scale Discriminative Training in + SMT" +(Simianer, Riezler, Dyer; ACL 2012) + + +Building +-------- +Builds when building cdec, see ../BUILDING . +To build only parts needed for dtrain do +``` + autoreconf -ifv + ./configure + cd training/dtrain/; make +``` + +Running +------- +See directories under test/ . + +Legal +----- +Copyright (c) 2012-2013 by Patrick Simianer <p@simianer.de> + +See the file LICENSE.txt in the root folder for the licensing terms that this software is +released under. + diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc new file mode 100644 index 00000000..149f87d4 --- /dev/null +++ b/training/dtrain/dtrain.cc @@ -0,0 +1,553 @@ +#include "dtrain.h" + + +bool +dtrain_init(int argc, char** argv, po::variables_map* cfg) +{ + po::options_description ini("Configuration File Options"); + ini.add_options() + ("input", po::value<string>()->default_value("-"), "input file (src)") + ("refs,r", po::value<string>(), "references") + ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT") + ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)") + ("decoder_config", po::value<string>(), "configuration file for cdec") + ("print_weights", po::value<string>(), "weights to print on each iteration") + ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences") + ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration") + ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)") + ("k", po::value<unsigned>()->default_value(100), "how many translations to sample") + ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'") + ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'") + ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'") + ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5") + ("pair_threshold", po::value<score_t>()->default_value(0.), "bleu [0,1] threshold to filter pairs") + ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)") + ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_") + ("learning_rate", po::value<weight_t>()->default_value(1.0), "learning rate") + ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)") + ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)") + ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input") + ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010) UNTESTED") + ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength") + ("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPLEMENTED") // TODO + ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU") + ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair") + ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near") + ("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.") + ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); + po::options_description cl("Command Line Options"); + cl.add_options() + ("config,c", po::value<string>(), "dtrain config file") + ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet") + ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose"); + cl.add(ini); + po::store(parse_command_line(argc, argv, cl), *cfg); + if (cfg->count("config")) { + ifstream ini_f((*cfg)["config"].as<string>().c_str()); + po::store(po::parse_config_file(ini_f, ini), *cfg); + } + po::notify(*cfg); + if (!cfg->count("decoder_config")) { + cerr << cl << endl; + return false; + } + if ((*cfg)["sample_from"].as<string>() != "kbest" + && (*cfg)["sample_from"].as<string>() != "forest") { + cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as<string>() << "', use 'kbest' or 'forest'." << endl; + return false; + } + if ((*cfg)["sample_from"].as<string>() == "kbest" && (*cfg)["filter"].as<string>() != "uniq" && + (*cfg)["filter"].as<string>() != "not") { + cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as<string>() << "', use 'uniq' or 'not'." << endl; + return false; + } + if ((*cfg)["pair_sampling"].as<string>() != "all" && (*cfg)["pair_sampling"].as<string>() != "XYX" && + (*cfg)["pair_sampling"].as<string>() != "PRO") { + cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "'." << endl; + return false; + } + if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") { + cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl; + } + if((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) { + cerr << "hi_lo must lie in [0.01, 0.5]" << endl; + return false; + } + if ((*cfg)["pair_threshold"].as<score_t>() < 0) { + cerr << "The threshold must be >= 0!" << endl; + return false; + } + if ((*cfg)["select_weights"].as<string>() != "last" && (*cfg)["select_weights"].as<string>() != "best" && + (*cfg)["select_weights"].as<string>() != "avg" && (*cfg)["select_weights"].as<string>() != "VOID") { + cerr << "Wrong 'select_weights' param: '" << (*cfg)["select_weights"].as<string>() << "', use 'last' or 'best'." << endl; + return false; + } + return true; +} + +int +main(int argc, char** argv) +{ + // handle most parameters + po::variables_map cfg; + if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong + bool quiet = false; + if (cfg.count("quiet")) quiet = true; + bool verbose = false; + if (cfg.count("verbose")) verbose = true; + bool noup = false; + if (cfg.count("noup")) noup = true; + bool rescale = false; + if (cfg.count("rescale")) rescale = true; + bool keep = false; + if (cfg.count("keep")) keep = true; + + const unsigned k = cfg["k"].as<unsigned>(); + const unsigned N = cfg["N"].as<unsigned>(); + const unsigned T = cfg["epochs"].as<unsigned>(); + const unsigned stop_after = cfg["stop_after"].as<unsigned>(); + const string filter_type = cfg["filter"].as<string>(); + const string sample_from = cfg["sample_from"].as<string>(); + const string pair_sampling = cfg["pair_sampling"].as<string>(); + const score_t pair_threshold = cfg["pair_threshold"].as<score_t>(); + const string select_weights = cfg["select_weights"].as<string>(); + const float hi_lo = cfg["hi_lo"].as<float>(); + const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>(); + const unsigned max_pairs = cfg["max_pairs"].as<unsigned>(); + weight_t loss_margin = cfg["loss_margin"].as<weight_t>(); + if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max(); + bool scale_bleu_diff = false; + if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true; + bool average = false; + if (select_weights == "avg") + average = true; + vector<string> print_weights; + if (cfg.count("print_weights")) + boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" ")); + + + // setup decoder + register_feature_functions(); + SetSilent(true); + ReadFile ini_rf(cfg["decoder_config"].as<string>()); + if (!quiet) + cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; + Decoder decoder(ini_rf.stream()); + + // scoring metric/scorer + string scorer_str = cfg["scorer"].as<string>(); + LocalScorer* scorer; + if (scorer_str == "bleu") { + scorer = dynamic_cast<BleuScorer*>(new BleuScorer); + } else if (scorer_str == "stupid_bleu") { + scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer); + } else if (scorer_str == "fixed_stupid_bleu") { + scorer = dynamic_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer); + } else if (scorer_str == "smooth_bleu") { + scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer); + } else if (scorer_str == "sum_bleu") { + scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer); + } else if (scorer_str == "sumexp_bleu") { + scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer); + } else if (scorer_str == "sumwhatever_bleu") { + scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); + } else if (scorer_str == "approx_bleu") { + scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); + } else if (scorer_str == "lc_bleu") { + scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); + } else { + cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; + exit(1); + } + vector<score_t> bleu_weights; + scorer->Init(N, bleu_weights); + + // setup decoder observer + MT19937 rng; // random number generator, only for forest sampling + HypSampler* observer; + if (sample_from == "kbest") + observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type)); + else + observer = dynamic_cast<KSampler*>(new KSampler(k, &rng)); + observer->SetScorer(scorer); + + // init weights + vector<weight_t>& dense_weights = decoder.CurrentWeightVector(); + SparseVector<weight_t> lambdas, cumulative_penalties, w_average; + if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights); + Weights::InitSparseVector(dense_weights, &lambdas); + + // meta params for perceptron, SVM + weight_t eta = cfg["learning_rate"].as<weight_t>(); + weight_t gamma = cfg["gamma"].as<weight_t>(); + + // faster perceptron: consider only misranked pairs, see + // DO NOT ENABLE WITH SVM (gamma > 0) OR loss_margin! + bool faster_perceptron = false; + if (gamma==0 && loss_margin==0) faster_perceptron = true; + + // l1 regularization + bool l1naive = false; + bool l1clip = false; + bool l1cumul = false; + weight_t l1_reg = 0; + if (cfg["l1_reg"].as<string>() != "none") { + string s = cfg["l1_reg"].as<string>(); + if (s == "naive") l1naive = true; + else if (s == "clip") l1clip = true; + else if (s == "cumul") l1cumul = true; + l1_reg = cfg["l1_reg_strength"].as<weight_t>(); + } + + // output + string output_fn = cfg["output"].as<string>(); + // input + string input_fn = cfg["input"].as<string>(); + ReadFile input(input_fn); + // buffer input for t > 0 + vector<string> src_str_buf; // source strings (decoder takes only strings) + vector<vector<WordID> > ref_ids_buf; // references as WordID vecs + string refs_fn = cfg["refs"].as<string>(); + ReadFile refs(refs_fn); + + unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size + vector<pair<score_t, score_t> > all_scores; + score_t max_score = 0.; + unsigned best_it = 0; + float overall_time = 0.; + + // output cfg + if (!quiet) { + cerr << _p5; + cerr << endl << "dtrain" << endl << "Parameters:" << endl; + cerr << setw(25) << "k " << k << endl; + cerr << setw(25) << "N " << N << endl; + cerr << setw(25) << "T " << T << endl; + cerr << setw(26) << "scorer '" << scorer_str << "'" << endl; + if (scorer_str == "approx_bleu") + cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl; + cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl; + if (sample_from == "kbest") + cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl; + if (!scale_bleu_diff) cerr << setw(25) << "learning rate " << eta << endl; + else cerr << setw(25) << "learning rate " << "bleu diff" << endl; + cerr << setw(25) << "gamma " << gamma << endl; + cerr << setw(25) << "loss margin " << loss_margin << endl; + cerr << setw(25) << "faster perceptron " << faster_perceptron << endl; + cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl; + if (pair_sampling == "XYX") + cerr << setw(25) << "hi lo " << hi_lo << endl; + cerr << setw(25) << "pair threshold " << pair_threshold << endl; + cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl; + if (cfg.count("l1_reg")) + cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl; + if (rescale) + cerr << setw(25) << "rescale " << rescale << endl; + cerr << setw(25) << "max pairs " << max_pairs << endl; + cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; + cerr << setw(25) << "input " << "'" << input_fn << "'" << endl; + cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl; + cerr << setw(25) << "output " << "'" << output_fn << "'" << endl; + if (cfg.count("input_weights")) + cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as<string>() << "'" << endl; + if (stop_after > 0) + cerr << setw(25) << "stop_after " << stop_after << endl; + if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl; + } + + + for (unsigned t = 0; t < T; t++) // T epochs + { + + time_t start, end; + time(&start); + score_t score_sum = 0.; + score_t model_sum(0); + unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0; + if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl; + + while(true) + { + + string in; + bool next = false, stop = false; // next iteration or premature stop + if (t == 0) { + if(!getline(*input, in)) next = true; + } else { + if (ii == in_sz) next = true; // stop if we reach the end of our input + } + // stop after X sentences (but still go on for those) + if (stop_after > 0 && stop_after == ii && !next) stop = true; + + // produce some pretty output + if (!quiet && !verbose) { + if (ii == 0) cerr << " "; + if ((ii+1) % (DTRAIN_DOTS) == 0) { + cerr << "."; + cerr.flush(); + } + if ((ii+1) % (20*DTRAIN_DOTS) == 0) { + cerr << " " << ii+1 << endl; + if (!next && !stop) cerr << " "; + } + if (stop) { + if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; + cerr << "Stopping after " << stop_after << " input sentences." << endl; + } else { + if (next) { + if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; + } + } + } + + // next iteration + if (next || stop) break; + + // weights + lambdas.init_vector(&dense_weights); + + // getting input + vector<WordID> ref_ids; // reference as vector<WordID> + if (t == 0) { + string r_; + getline(*refs, r_); + vector<string> ref_tok; + boost::split(ref_tok, r_, boost::is_any_of(" ")); + register_and_convert(ref_tok, ref_ids); + ref_ids_buf.push_back(ref_ids); + src_str_buf.push_back(in); + } else { + ref_ids = ref_ids_buf[ii]; + } + observer->SetRef(ref_ids); + if (t == 0) + decoder.Decode(in, observer); + else + decoder.Decode(src_str_buf[ii], observer); + + // get (scored) samples + vector<ScoredHyp>* samples = observer->GetSamples(); + + if (verbose) { + cerr << "--- ref for " << ii << ": "; + if (t > 0) printWordIDVec(ref_ids_buf[ii]); + else printWordIDVec(ref_ids); + cerr << endl; + for (unsigned u = 0; u < samples->size(); u++) { + cerr << _p2 << _np << "[" << u << ". '"; + printWordIDVec((*samples)[u].w); + cerr << "'" << endl; + cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl; + cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl; + } + } + + score_sum += (*samples)[0].score; // stats for 1best + model_sum += (*samples)[0].model; + + f_count += observer->get_f_count(); + list_sz += observer->get_sz(); + + // weight updates + if (!noup) { + // get pairs + vector<pair<ScoredHyp,ScoredHyp> > pairs; + if (pair_sampling == "all") + all_pairs(samples, pairs, pair_threshold, max_pairs, faster_perceptron); + if (pair_sampling == "XYX") + partXYX(samples, pairs, pair_threshold, max_pairs, faster_perceptron, hi_lo); + if (pair_sampling == "PRO") + PROsampling(samples, pairs, pair_threshold, max_pairs); + npairs += pairs.size(); + + for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin(); + it != pairs.end(); it++) { + bool rank_error; + score_t margin; + if (faster_perceptron) { // we only have considering misranked pairs + rank_error = true; // pair sampling already did this for us + margin = std::numeric_limits<float>::max(); + } else { + rank_error = it->first.model <= it->second.model; + margin = fabs(fabs(it->first.model) - fabs(it->second.model)); + if (!rank_error && margin < loss_margin) margin_violations++; + } + if (rank_error) rank_errors++; + if (scale_bleu_diff) eta = it->first.score - it->second.score; + if (rank_error || margin < loss_margin) { + SparseVector<weight_t> diff_vec = it->first.f - it->second.f; + lambdas.plus_eq_v_times_s(diff_vec, eta); + if (gamma) + lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); + } + } + + // l1 regularization + // please note that this penalizes _all_ weights + // (contrary to only the ones changed by the last update) + // after a _sentence_ (not after each example/pair) + if (l1naive) { + FastSparseVector<weight_t>::iterator it = lambdas.begin(); + for (; it != lambdas.end(); ++it) { + it->second -= sign(it->second) * l1_reg; + } + } else if (l1clip) { + FastSparseVector<weight_t>::iterator it = lambdas.begin(); + for (; it != lambdas.end(); ++it) { + if (it->second != 0) { + weight_t v = it->second; + if (v > 0) { + it->second = max(0., v - l1_reg); + } else { + it->second = min(0., v + l1_reg); + } + } + } + } else if (l1cumul) { + weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input + FastSparseVector<weight_t>::iterator it = lambdas.begin(); + for (; it != lambdas.end(); ++it) { + if (it->second != 0) { + weight_t v = it->second; + weight_t penalized = 0.; + if (v > 0) { + penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first))); + } else { + penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first))); + } + it->second = penalized; + cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized); + } + } + } + + } + + if (rescale) lambdas /= lambdas.l2norm(); + + ++ii; + + } // input loop + + if (average) w_average += lambdas; + + if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset(); + + if (t == 0) { + in_sz = ii; // remember size of input (# lines) + } + + // print some stats + score_t score_avg = score_sum/(score_t)in_sz; + score_t model_avg = model_sum/(score_t)in_sz; + score_t score_diff, model_diff; + if (t > 0) { + score_diff = score_avg - all_scores[t-1].first; + model_diff = model_avg - all_scores[t-1].second; + } else { + score_diff = score_avg; + model_diff = model_avg; + } + + unsigned nonz = 0; + if (!quiet) nonz = (unsigned)lambdas.num_nonzero(); + + if (!quiet) { + cerr << _p5 << _p << "WEIGHTS" << endl; + for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) { + cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl; + } + cerr << " ---" << endl; + cerr << _np << " 1best avg score: " << score_avg; + cerr << _p << " (" << score_diff << ")" << endl; + cerr << _np << " 1best avg model score: " << model_avg; + cerr << _p << " (" << model_diff << ")" << endl; + cerr << " avg # pairs: "; + cerr << _np << npairs/(float)in_sz; + if (faster_perceptron) cerr << " (meaningless)"; + cerr << endl; + cerr << " avg # rank err: "; + cerr << rank_errors/(float)in_sz << endl; + cerr << " avg # margin viol: "; + cerr << margin_violations/(float)in_sz << endl; + cerr << " non0 feature count: " << nonz << endl; + cerr << " avg list sz: " << list_sz/(float)in_sz << endl; + cerr << " avg f count: " << f_count/(float)list_sz << endl; + } + + pair<score_t,score_t> remember; + remember.first = score_avg; + remember.second = model_avg; + all_scores.push_back(remember); + if (score_avg > max_score) { + max_score = score_avg; + best_it = t; + } + time (&end); + float time_diff = difftime(end, start); + overall_time += time_diff; + if (!quiet) { + cerr << _p2 << _np << "(time " << time_diff/60. << " min, "; + cerr << time_diff/in_sz << " s/S)" << endl; + } + if (t+1 != T && !quiet) cerr << endl; + + if (noup) break; + + // write weights to file + if (select_weights == "best" || keep) { + lambdas.init_vector(&dense_weights); + string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz"; + Weights::WriteToFile(w_fn, dense_weights, true); + } + + } // outer loop + + if (average) w_average /= (weight_t)T; + + if (!noup) { + if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl; + if (select_weights == "last" || average) { // last, average + WriteFile of(output_fn); // works with '-' + ostream& o = *of.stream(); + o.precision(17); + o << _np; + if (average) { + for (SparseVector<weight_t>::iterator it = w_average.begin(); it != w_average.end(); ++it) { + if (it->second == 0) continue; + o << FD::Convert(it->first) << '\t' << it->second << endl; + } + } else { + for (SparseVector<weight_t>::iterator it = lambdas.begin(); it != lambdas.end(); ++it) { + if (it->second == 0) continue; + o << FD::Convert(it->first) << '\t' << it->second << endl; + } + } + } else if (select_weights == "VOID") { // do nothing with the weights + } else { // best + if (output_fn != "-") { + CopyFile("weights."+boost::lexical_cast<string>(best_it)+".gz", output_fn); + } else { + ReadFile bestw("weights."+boost::lexical_cast<string>(best_it)+".gz"); + string o; + cout.precision(17); + cout << _np; + while(getline(*bestw, o)) cout << o << endl; + } + if (!keep) { + for (unsigned i = 0; i < T; i++) { + string s = "weights." + boost::lexical_cast<string>(i) + ".gz"; + unlink(s.c_str()); + } + } + } + if (!quiet) cerr << "done" << endl; + } + + if (!quiet) { + cerr << _p5 << _np << endl << "---" << endl << "Best iteration: "; + cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl; + cerr << "This took " << overall_time/60. << " min." << endl; + } +} + diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h new file mode 100644 index 00000000..eb0b9f17 --- /dev/null +++ b/training/dtrain/dtrain.h @@ -0,0 +1,92 @@ +#ifndef _DTRAIN_H_ +#define _DTRAIN_H_ + +#define DTRAIN_DOTS 10 // after how many inputs to display a '.' +#define DTRAIN_SCALE 100000 + +#include <iomanip> +#include <climits> +#include <string.h> + +#include <boost/algorithm/string.hpp> +#include <boost/program_options.hpp> + +#include "ksampler.h" +#include "pairsampling.h" + +#include "filelib.h" + + +using namespace std; +using namespace dtrain; +namespace po = boost::program_options; + +inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids) +{ + vector<string>::const_iterator it; + for (it = strs.begin(); it < strs.end(); it++) + ids.push_back(TD::Convert(*it)); +} + +inline string gettmpf(const string path, const string infix) +{ + char fn[path.size() + infix.size() + 8]; + strcpy(fn, path.c_str()); + strcat(fn, "/"); + strcat(fn, infix.c_str()); + strcat(fn, "-XXXXXX"); + if (!mkstemp(fn)) { + cerr << "Cannot make temp file in" << path << " , exiting." << endl; + exit(1); + } + return string(fn); +} + +inline void split_in(string& s, vector<string>& parts) +{ + unsigned f = 0; + for(unsigned i = 0; i < 3; i++) { + unsigned e = f; + f = s.find("\t", f+1); + if (e != 0) parts.push_back(s.substr(e+1, f-e-1)); + else parts.push_back(s.substr(0, f)); + } + s.erase(0, f+1); +} + +struct HSReporter +{ + string task_id_; + + HSReporter(string task_id) : task_id_(task_id) {} + + inline void update_counter(string name, unsigned amount) { + cerr << "reporter:counter:" << task_id_ << "," << name << "," << amount << endl; + } + inline void update_gcounter(string name, unsigned amount) { + cerr << "reporter:counter:Global," << name << "," << amount << endl; + } +}; + +inline ostream& _np(ostream& out) { return out << resetiosflags(ios::showpos); } +inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); } +inline ostream& _p2(ostream& out) { return out << setprecision(2); } +inline ostream& _p5(ostream& out) { return out << setprecision(5); } + +inline void printWordIDVec(vector<WordID>& v) +{ + for (unsigned i = 0; i < v.size(); i++) { + cerr << TD::Convert(v[i]); + if (i < v.size()-1) cerr << " "; + } +} + +template<typename T> +inline T sign(T z) +{ + if (z == 0) return 0; + return z < 0 ? -1 : +1; +} + +#endif + diff --git a/training/dtrain/examples/parallelized/README b/training/dtrain/examples/parallelized/README new file mode 100644 index 00000000..89715105 --- /dev/null +++ b/training/dtrain/examples/parallelized/README @@ -0,0 +1,5 @@ +run for example + ../../parallelize.rb ./dtrain.ini 4 false 2 2 ./in ./refs + +final weights will be in the file work/weights.3 + diff --git a/training/dtrain/examples/parallelized/cdec.ini b/training/dtrain/examples/parallelized/cdec.ini new file mode 100644 index 00000000..e43ba1c4 --- /dev/null +++ b/training/dtrain/examples/parallelized/cdec.ini @@ -0,0 +1,22 @@ +formalism=scfg +add_pass_through_rules=true +intersection_strategy=cube_pruning +cubepruning_pop_limit=200 +scfg_max_span_limit=15 +feature_function=WordPenalty +feature_function=KLanguageModel ../example/nc-wmt11.en.srilm.gz +#feature_function=ArityPenalty +#feature_function=CMR2008ReorderingFeatures +#feature_function=Dwarf +#feature_function=InputIndicator +#feature_function=LexNullJump +#feature_function=NewJump +#feature_function=NgramFeatures +#feature_function=NonLatinCount +#feature_function=OutputIndicator +#feature_function=RuleIdentityFeatures +#feature_function=RuleNgramFeatures +#feature_function=RuleShape +#feature_function=SourceSpanSizeFeatures +#feature_function=SourceWordPenalty +#feature_function=SpanFeatures diff --git a/training/dtrain/examples/parallelized/dtrain.ini b/training/dtrain/examples/parallelized/dtrain.ini new file mode 100644 index 00000000..f19ef891 --- /dev/null +++ b/training/dtrain/examples/parallelized/dtrain.ini @@ -0,0 +1,16 @@ +k=100 +N=4 +learning_rate=0.0001 +gamma=0 +loss_margin=1.0 +epochs=1 +scorer=stupid_bleu +sample_from=kbest +filter=uniq +pair_sampling=XYX +hi_lo=0.1 +select_weights=last +print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough +# newer version of the grammar extractor use different feature names: +#print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough +decoder_config=cdec.ini diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.0.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.0.gz Binary files differnew file mode 100644 index 00000000..1e28a24b --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.0.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.1.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.1.gz Binary files differnew file mode 100644 index 00000000..372f5675 --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.1.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.2.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.2.gz Binary files differnew file mode 100644 index 00000000..145d0dc0 --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.2.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.3.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.3.gz Binary files differnew file mode 100644 index 00000000..105593ff --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.3.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.4.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.4.gz Binary files differnew file mode 100644 index 00000000..30781f48 --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.4.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.5.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.5.gz Binary files differnew file mode 100644 index 00000000..834ee759 --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.5.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.6.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.6.gz Binary files differnew file mode 100644 index 00000000..2e76f348 --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.6.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.7.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.7.gz Binary files differnew file mode 100644 index 00000000..3741a887 --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.7.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.8.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.8.gz Binary files differnew file mode 100644 index 00000000..ebf6bd0c --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.8.gz diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.9.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.9.gz Binary files differnew file mode 100644 index 00000000..c1791059 --- /dev/null +++ b/training/dtrain/examples/parallelized/grammar/grammar.out.9.gz diff --git a/training/dtrain/examples/parallelized/in b/training/dtrain/examples/parallelized/in new file mode 100644 index 00000000..51d01fe7 --- /dev/null +++ b/training/dtrain/examples/parallelized/in @@ -0,0 +1,10 @@ +<seg grammar="grammar/grammar.out.0.gz" id="0">europas nach rassen geteiltes haus</seg> +<seg grammar="grammar/grammar.out.1.gz" id="1">ein gemeinsames merkmal aller extremen rechten in europa ist ihr rassismus und die tatsache , daß sie das einwanderungsproblem als politischen hebel benutzen .</seg> +<seg grammar="grammar/grammar.out.2.gz" id="2">der lega nord in italien , der vlaams block in den niederlanden , die anhänger von le pens nationaler front in frankreich , sind beispiele für parteien oder bewegungen , die sich um das gemeinsame thema : ablehnung der zuwanderung gebildet haben und um forderung nach einer vereinfachten politik , um sie zu regeln .</seg> +<seg grammar="grammar/grammar.out.3.gz" id="3">während individuen wie jörg haidar und jean @-@ marie le pen kommen und ( leider nicht zu bald ) wieder gehen mögen , wird die rassenfrage aus der europäischer politik nicht so bald verschwinden .</seg> +<seg grammar="grammar/grammar.out.4.gz" id="4">eine alternde einheimische bevölkerung und immer offenere grenzen vermehren die rassistische zersplitterung in den europäischen ländern .</seg> +<seg grammar="grammar/grammar.out.5.gz" id="5">die großen parteien der rechten und der linken mitte haben sich dem problem gestellt , in dem sie den kopf in den sand gesteckt und allen aussichten zuwider gehofft haben , es möge bald verschwinden .</seg> +<seg grammar="grammar/grammar.out.6.gz" id="6">das aber wird es nicht , wie die geschichte des rassismus in amerika deutlich zeigt .</seg> +<seg grammar="grammar/grammar.out.7.gz" id="7">die beziehungen zwischen den rassen standen in den usa über jahrzehnte - und tun das noch heute - im zentrum der politischen debatte . das ging so weit , daß rassentrennung genauso wichtig wie das einkommen wurde , - wenn nicht sogar noch wichtiger - um politische zuneigungen und einstellungen zu bestimmen .</seg> +<seg grammar="grammar/grammar.out.8.gz" id="8">der erste schritt , um mit der rassenfrage umzugehen ist , ursache und folgen rassistischer feindseligkeiten zu verstehen , auch dann , wenn das bedeutet , unangenehme tatsachen aufzudecken .</seg> +<seg grammar="grammar/grammar.out.9.gz" id="9">genau das haben in den usa eine große anzahl an forschungsvorhaben in wirtschaft , soziologie , psychologie und politikwissenschaft geleistet . diese forschungen zeigten , daß menschen unterschiedlicher rasse einander deutlich weniger vertrauen .</seg> diff --git a/training/dtrain/examples/parallelized/refs b/training/dtrain/examples/parallelized/refs new file mode 100644 index 00000000..632e27b0 --- /dev/null +++ b/training/dtrain/examples/parallelized/refs @@ -0,0 +1,10 @@ +europe 's divided racial house +a common feature of europe 's extreme right is its racism and use of the immigration issue as a political wedge . +the lega nord in italy , the vlaams blok in the netherlands , the supporters of le pen 's national front in france , are all examples of parties or movements formed on the common theme of aversion to immigrants and promotion of simplistic policies to control them . +while individuals like jorg haidar and jean @-@ marie le pen may come and ( never to soon ) go , the race question will not disappear from european politics anytime soon . +an aging population at home and ever more open borders imply increasing racial fragmentation in european countries . +mainstream parties of the center left and center right have confronted this prospect by hiding their heads in the ground , hoping against hope that the problem will disappear . +it will not , as america 's racial history clearly shows . +race relations in the us have been for decades - and remain - at the center of political debate , to the point that racial cleavages are as important as income , if not more , as determinants of political preferences and attitudes . +the first step to address racial politics is to understand the origin and consequences of racial animosity , even if it means uncovering unpleasant truths . +this is precisely what a large amount of research in economics , sociology , psychology and political science has done for the us . diff --git a/training/dtrain/examples/parallelized/work/out.0.0 b/training/dtrain/examples/parallelized/work/out.0.0 new file mode 100644 index 00000000..7a00ed0f --- /dev/null +++ b/training/dtrain/examples/parallelized/work/out.0.0 @@ -0,0 +1,61 @@ + cdec cfg 'cdec.ini' +Loading the LM will be faster if you build a binary file. +Reading ../example/nc-wmt11.en.srilm.gz +----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 +**************************************************************************************************** +Seeding random number sequence to 3121929377 + +dtrain +Parameters: + k 100 + N 4 + T 1 + scorer 'stupid_bleu' + sample from 'kbest' + filter 'uniq' + learning rate 0.0001 + gamma 0 + loss margin 1 + pairs 'XYX' + hi lo 0.1 + pair threshold 0 + select weights 'last' + l1 reg 0 'none' + max pairs 4294967295 + cdec cfg 'cdec.ini' + input 'work/shard.0.0.in' + refs 'work/shard.0.0.refs' + output 'work/weights.0.0' +(a dot represents 10 inputs) +Iteration #1 of 1. + 5 +WEIGHTS + Glue = +0.2663 + WordPenalty = -0.0079042 + LanguageModel = +0.44782 + LanguageModel_OOV = -0.0401 + PhraseModel_0 = -0.193 + PhraseModel_1 = +0.71321 + PhraseModel_2 = +0.85196 + PhraseModel_3 = -0.43986 + PhraseModel_4 = -0.44803 + PhraseModel_5 = -0.0538 + PhraseModel_6 = -0.1788 + PassThrough = -0.1477 + --- + 1best avg score: 0.17521 (+0.17521) + 1best avg model score: 21.556 (+21.556) + avg # pairs: 1671.2 + avg # rank err: 1118.6 + avg # margin viol: 552.6 + non0 feature count: 12 + avg list sz: 100 + avg f count: 11.32 +(time 0.37 min, 4.4 s/S) + +Writing weights file to 'work/weights.0.0' ... +done + +--- +Best iteration: 1 [SCORE 'stupid_bleu'=0.17521]. +This took 0.36667 min. diff --git a/training/dtrain/examples/parallelized/work/out.0.1 b/training/dtrain/examples/parallelized/work/out.0.1 new file mode 100644 index 00000000..e2bd6649 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/out.0.1 @@ -0,0 +1,62 @@ + cdec cfg 'cdec.ini' +Loading the LM will be faster if you build a binary file. +Reading ../example/nc-wmt11.en.srilm.gz +----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 +**************************************************************************************************** +Seeding random number sequence to 2767202922 + +dtrain +Parameters: + k 100 + N 4 + T 1 + scorer 'stupid_bleu' + sample from 'kbest' + filter 'uniq' + learning rate 0.0001 + gamma 0 + loss margin 1 + pairs 'XYX' + hi lo 0.1 + pair threshold 0 + select weights 'last' + l1 reg 0 'none' + max pairs 4294967295 + cdec cfg 'cdec.ini' + input 'work/shard.0.0.in' + refs 'work/shard.0.0.refs' + output 'work/weights.0.1' + weights in 'work/weights.0' +(a dot represents 10 inputs) +Iteration #1 of 1. + 5 +WEIGHTS + Glue = -0.2699 + WordPenalty = +0.080605 + LanguageModel = -0.026572 + LanguageModel_OOV = -0.30025 + PhraseModel_0 = -0.32076 + PhraseModel_1 = +0.67451 + PhraseModel_2 = +0.92 + PhraseModel_3 = -0.36402 + PhraseModel_4 = -0.592 + PhraseModel_5 = -0.0269 + PhraseModel_6 = -0.28755 + PassThrough = -0.33285 + --- + 1best avg score: 0.26638 (+0.26638) + 1best avg model score: 53.197 (+53.197) + avg # pairs: 2028.6 + avg # rank err: 998.2 + avg # margin viol: 918.8 + non0 feature count: 12 + avg list sz: 100 + avg f count: 10.496 +(time 0.32 min, 3.8 s/S) + +Writing weights file to 'work/weights.0.1' ... +done + +--- +Best iteration: 1 [SCORE 'stupid_bleu'=0.26638]. +This took 0.31667 min. diff --git a/training/dtrain/examples/parallelized/work/out.1.0 b/training/dtrain/examples/parallelized/work/out.1.0 new file mode 100644 index 00000000..6e790e38 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/out.1.0 @@ -0,0 +1,61 @@ + cdec cfg 'cdec.ini' +Loading the LM will be faster if you build a binary file. +Reading ../example/nc-wmt11.en.srilm.gz +----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 +**************************************************************************************************** +Seeding random number sequence to 1432415010 + +dtrain +Parameters: + k 100 + N 4 + T 1 + scorer 'stupid_bleu' + sample from 'kbest' + filter 'uniq' + learning rate 0.0001 + gamma 0 + loss margin 1 + pairs 'XYX' + hi lo 0.1 + pair threshold 0 + select weights 'last' + l1 reg 0 'none' + max pairs 4294967295 + cdec cfg 'cdec.ini' + input 'work/shard.1.0.in' + refs 'work/shard.1.0.refs' + output 'work/weights.1.0' +(a dot represents 10 inputs) +Iteration #1 of 1. + 5 +WEIGHTS + Glue = -0.3815 + WordPenalty = +0.20064 + LanguageModel = +0.95304 + LanguageModel_OOV = -0.264 + PhraseModel_0 = -0.22362 + PhraseModel_1 = +0.12254 + PhraseModel_2 = +0.26328 + PhraseModel_3 = +0.38018 + PhraseModel_4 = -0.48654 + PhraseModel_5 = +0 + PhraseModel_6 = -0.3645 + PassThrough = -0.2216 + --- + 1best avg score: 0.10863 (+0.10863) + 1best avg model score: -4.9841 (-4.9841) + avg # pairs: 1345.4 + avg # rank err: 822.4 + avg # margin viol: 501 + non0 feature count: 11 + avg list sz: 100 + avg f count: 11.814 +(time 0.45 min, 5.4 s/S) + +Writing weights file to 'work/weights.1.0' ... +done + +--- +Best iteration: 1 [SCORE 'stupid_bleu'=0.10863]. +This took 0.45 min. diff --git a/training/dtrain/examples/parallelized/work/out.1.1 b/training/dtrain/examples/parallelized/work/out.1.1 new file mode 100644 index 00000000..0b984761 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/out.1.1 @@ -0,0 +1,62 @@ + cdec cfg 'cdec.ini' +Loading the LM will be faster if you build a binary file. +Reading ../example/nc-wmt11.en.srilm.gz +----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 +**************************************************************************************************** +Seeding random number sequence to 1771918374 + +dtrain +Parameters: + k 100 + N 4 + T 1 + scorer 'stupid_bleu' + sample from 'kbest' + filter 'uniq' + learning rate 0.0001 + gamma 0 + loss margin 1 + pairs 'XYX' + hi lo 0.1 + pair threshold 0 + select weights 'last' + l1 reg 0 'none' + max pairs 4294967295 + cdec cfg 'cdec.ini' + input 'work/shard.1.0.in' + refs 'work/shard.1.0.refs' + output 'work/weights.1.1' + weights in 'work/weights.0' +(a dot represents 10 inputs) +Iteration #1 of 1. + 5 +WEIGHTS + Glue = -0.3178 + WordPenalty = +0.11092 + LanguageModel = +0.17269 + LanguageModel_OOV = -0.13485 + PhraseModel_0 = -0.45371 + PhraseModel_1 = +0.38789 + PhraseModel_2 = +0.75311 + PhraseModel_3 = -0.38163 + PhraseModel_4 = -0.58817 + PhraseModel_5 = -0.0269 + PhraseModel_6 = -0.27315 + PassThrough = -0.16745 + --- + 1best avg score: 0.13169 (+0.13169) + 1best avg model score: 24.226 (+24.226) + avg # pairs: 1951.2 + avg # rank err: 985.4 + avg # margin viol: 951 + non0 feature count: 12 + avg list sz: 100 + avg f count: 11.224 +(time 0.42 min, 5 s/S) + +Writing weights file to 'work/weights.1.1' ... +done + +--- +Best iteration: 1 [SCORE 'stupid_bleu'=0.13169]. +This took 0.41667 min. diff --git a/training/dtrain/examples/parallelized/work/shard.0.0.in b/training/dtrain/examples/parallelized/work/shard.0.0.in new file mode 100644 index 00000000..92f9c78e --- /dev/null +++ b/training/dtrain/examples/parallelized/work/shard.0.0.in @@ -0,0 +1,5 @@ +<seg grammar="grammar/grammar.out.0.gz" id="0">europas nach rassen geteiltes haus</seg> +<seg grammar="grammar/grammar.out.1.gz" id="1">ein gemeinsames merkmal aller extremen rechten in europa ist ihr rassismus und die tatsache , daß sie das einwanderungsproblem als politischen hebel benutzen .</seg> +<seg grammar="grammar/grammar.out.2.gz" id="2">der lega nord in italien , der vlaams block in den niederlanden , die anhänger von le pens nationaler front in frankreich , sind beispiele für parteien oder bewegungen , die sich um das gemeinsame thema : ablehnung der zuwanderung gebildet haben und um forderung nach einer vereinfachten politik , um sie zu regeln .</seg> +<seg grammar="grammar/grammar.out.3.gz" id="3">während individuen wie jörg haidar und jean @-@ marie le pen kommen und ( leider nicht zu bald ) wieder gehen mögen , wird die rassenfrage aus der europäischer politik nicht so bald verschwinden .</seg> +<seg grammar="grammar/grammar.out.4.gz" id="4">eine alternde einheimische bevölkerung und immer offenere grenzen vermehren die rassistische zersplitterung in den europäischen ländern .</seg> diff --git a/training/dtrain/examples/parallelized/work/shard.0.0.refs b/training/dtrain/examples/parallelized/work/shard.0.0.refs new file mode 100644 index 00000000..bef68fee --- /dev/null +++ b/training/dtrain/examples/parallelized/work/shard.0.0.refs @@ -0,0 +1,5 @@ +europe 's divided racial house +a common feature of europe 's extreme right is its racism and use of the immigration issue as a political wedge . +the lega nord in italy , the vlaams blok in the netherlands , the supporters of le pen 's national front in france , are all examples of parties or movements formed on the common theme of aversion to immigrants and promotion of simplistic policies to control them . +while individuals like jorg haidar and jean @-@ marie le pen may come and ( never to soon ) go , the race question will not disappear from european politics anytime soon . +an aging population at home and ever more open borders imply increasing racial fragmentation in european countries . diff --git a/training/dtrain/examples/parallelized/work/shard.1.0.in b/training/dtrain/examples/parallelized/work/shard.1.0.in new file mode 100644 index 00000000..b7695ce7 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/shard.1.0.in @@ -0,0 +1,5 @@ +<seg grammar="grammar/grammar.out.5.gz" id="5">die großen parteien der rechten und der linken mitte haben sich dem problem gestellt , in dem sie den kopf in den sand gesteckt und allen aussichten zuwider gehofft haben , es möge bald verschwinden .</seg> +<seg grammar="grammar/grammar.out.6.gz" id="6">das aber wird es nicht , wie die geschichte des rassismus in amerika deutlich zeigt .</seg> +<seg grammar="grammar/grammar.out.7.gz" id="7">die beziehungen zwischen den rassen standen in den usa über jahrzehnte - und tun das noch heute - im zentrum der politischen debatte . das ging so weit , daß rassentrennung genauso wichtig wie das einkommen wurde , - wenn nicht sogar noch wichtiger - um politische zuneigungen und einstellungen zu bestimmen .</seg> +<seg grammar="grammar/grammar.out.8.gz" id="8">der erste schritt , um mit der rassenfrage umzugehen ist , ursache und folgen rassistischer feindseligkeiten zu verstehen , auch dann , wenn das bedeutet , unangenehme tatsachen aufzudecken .</seg> +<seg grammar="grammar/grammar.out.9.gz" id="9">genau das haben in den usa eine große anzahl an forschungsvorhaben in wirtschaft , soziologie , psychologie und politikwissenschaft geleistet . diese forschungen zeigten , daß menschen unterschiedlicher rasse einander deutlich weniger vertrauen .</seg> diff --git a/training/dtrain/examples/parallelized/work/shard.1.0.refs b/training/dtrain/examples/parallelized/work/shard.1.0.refs new file mode 100644 index 00000000..6076f6d5 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/shard.1.0.refs @@ -0,0 +1,5 @@ +mainstream parties of the center left and center right have confronted this prospect by hiding their heads in the ground , hoping against hope that the problem will disappear . +it will not , as america 's racial history clearly shows . +race relations in the us have been for decades - and remain - at the center of political debate , to the point that racial cleavages are as important as income , if not more , as determinants of political preferences and attitudes . +the first step to address racial politics is to understand the origin and consequences of racial animosity , even if it means uncovering unpleasant truths . +this is precisely what a large amount of research in economics , sociology , psychology and political science has done for the us . diff --git a/training/dtrain/examples/parallelized/work/weights.0 b/training/dtrain/examples/parallelized/work/weights.0 new file mode 100644 index 00000000..ddd595a8 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/weights.0 @@ -0,0 +1,12 @@ +LanguageModel 0.7004298992212881 +PhraseModel_2 0.5576194336478857 +PhraseModel_1 0.41787318415343155 +PhraseModel_4 -0.46728502545635164 +PhraseModel_3 -0.029839521598455515 +Glue -0.05760000000000068 +PhraseModel_6 -0.2716499999999978 +PhraseModel_0 -0.20831031065605327 +LanguageModel_OOV -0.15205000000000077 +PassThrough -0.1846500000000006 +WordPenalty 0.09636994553433414 +PhraseModel_5 -0.026900000000000257 diff --git a/training/dtrain/examples/parallelized/work/weights.0.0 b/training/dtrain/examples/parallelized/work/weights.0.0 new file mode 100644 index 00000000..c9370b18 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/weights.0.0 @@ -0,0 +1,12 @@ +WordPenalty -0.0079041595706392243 +LanguageModel 0.44781580828279532 +LanguageModel_OOV -0.04010000000000042 +Glue 0.26629999999999948 +PhraseModel_0 -0.19299677809125185 +PhraseModel_1 0.71321026861732773 +PhraseModel_2 0.85195540993310537 +PhraseModel_3 -0.43986310822842656 +PhraseModel_4 -0.44802855630415955 +PhraseModel_5 -0.053800000000000514 +PhraseModel_6 -0.17879999999999835 +PassThrough -0.14770000000000036 diff --git a/training/dtrain/examples/parallelized/work/weights.0.1 b/training/dtrain/examples/parallelized/work/weights.0.1 new file mode 100644 index 00000000..8fad3de8 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/weights.0.1 @@ -0,0 +1,12 @@ +WordPenalty 0.080605055841244472 +LanguageModel -0.026571720531022844 +LanguageModel_OOV -0.30024999999999141 +Glue -0.26989999999999842 +PhraseModel_2 0.92000295209089566 +PhraseModel_1 0.67450748692470841 +PhraseModel_4 -0.5920000014976784 +PhraseModel_3 -0.36402437203127397 +PhraseModel_6 -0.28754999999999603 +PhraseModel_0 -0.32076244202907672 +PassThrough -0.33284999999999004 +PhraseModel_5 -0.026900000000000257 diff --git a/training/dtrain/examples/parallelized/work/weights.1 b/training/dtrain/examples/parallelized/work/weights.1 new file mode 100644 index 00000000..03058a16 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/weights.1 @@ -0,0 +1,12 @@ +PhraseModel_2 0.8365578543552836 +PhraseModel_4 -0.5900840266009169 +PhraseModel_1 0.5312000609786991 +PhraseModel_0 -0.3872342271319619 +PhraseModel_3 -0.3728279676912084 +Glue -0.2938500000000036 +PhraseModel_6 -0.2803499999999967 +PassThrough -0.25014999999999626 +LanguageModel_OOV -0.21754999999999702 +LanguageModel 0.07306061161169894 +WordPenalty 0.09576193325966899 +PhraseModel_5 -0.026900000000000257 diff --git a/training/dtrain/examples/parallelized/work/weights.1.0 b/training/dtrain/examples/parallelized/work/weights.1.0 new file mode 100644 index 00000000..6a6a65c1 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/weights.1.0 @@ -0,0 +1,11 @@ +WordPenalty 0.20064405063930751 +LanguageModel 0.9530439901597807 +LanguageModel_OOV -0.26400000000000112 +Glue -0.38150000000000084 +PhraseModel_0 -0.22362384322085468 +PhraseModel_1 0.12253609968953538 +PhraseModel_2 0.26328345736266612 +PhraseModel_3 0.38018406503151553 +PhraseModel_4 -0.48654149460854373 +PhraseModel_6 -0.36449999999999722 +PassThrough -0.22160000000000085 diff --git a/training/dtrain/examples/parallelized/work/weights.1.1 b/training/dtrain/examples/parallelized/work/weights.1.1 new file mode 100644 index 00000000..f56ea4a2 --- /dev/null +++ b/training/dtrain/examples/parallelized/work/weights.1.1 @@ -0,0 +1,12 @@ +WordPenalty 0.1109188106780935 +LanguageModel 0.17269294375442074 +LanguageModel_OOV -0.13485000000000266 +Glue -0.3178000000000088 +PhraseModel_2 0.75311275661967159 +PhraseModel_1 0.38789263503268989 +PhraseModel_4 -0.58816805170415531 +PhraseModel_3 -0.38163156335114284 +PhraseModel_6 -0.27314999999999739 +PhraseModel_0 -0.45370601223484697 +PassThrough -0.16745000000000249 +PhraseModel_5 -0.026900000000000257 diff --git a/training/dtrain/examples/standard/README b/training/dtrain/examples/standard/README new file mode 100644 index 00000000..ce37d31a --- /dev/null +++ b/training/dtrain/examples/standard/README @@ -0,0 +1,2 @@ +Call `dtrain` from this folder with ../../dtrain -c dtrain.ini . + diff --git a/training/dtrain/examples/standard/cdec.ini b/training/dtrain/examples/standard/cdec.ini new file mode 100644 index 00000000..e1edc68d --- /dev/null +++ b/training/dtrain/examples/standard/cdec.ini @@ -0,0 +1,26 @@ +formalism=scfg +add_pass_through_rules=true +scfg_max_span_limit=15 +intersection_strategy=cube_pruning +cubepruning_pop_limit=200 +grammar=nc-wmt11.grammar.gz +feature_function=WordPenalty +feature_function=KLanguageModel ./nc-wmt11.en.srilm.gz +# all currently working feature functions for translation: +# (with those features active that were used in the ACL paper) +#feature_function=ArityPenalty +#feature_function=CMR2008ReorderingFeatures +#feature_function=Dwarf +#feature_function=InputIndicator +#feature_function=LexNullJump +#feature_function=NewJump +#feature_function=NgramFeatures +#feature_function=NonLatinCount +#feature_function=OutputIndicator +feature_function=RuleIdentityFeatures +feature_function=RuleSourceBigramFeatures +feature_function=RuleTargetBigramFeatures +feature_function=RuleShape +#feature_function=SourceSpanSizeFeatures +#feature_function=SourceWordPenalty +#feature_function=SpanFeatures diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini new file mode 100644 index 00000000..e1072d30 --- /dev/null +++ b/training/dtrain/examples/standard/dtrain.ini @@ -0,0 +1,24 @@ +input=./nc-wmt11.de.gz +refs=./nc-wmt11.en.gz +output=- # a weights file (add .gz for gzip compression) or STDOUT '-' +select_weights=VOID # output average (over epochs) weight vector +decoder_config=./cdec.ini # config for cdec +# weights for these features will be printed on each iteration +print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough +# newer version of the grammar extractor use different feature names: +#print_weights= EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV +stop_after=10 # stop epoch after 10 inputs + +# interesting stuff +epochs=2 # run over input 2 times +k=100 # use 100best lists +N=4 # optimize (approx) BLEU4 +scorer=stupid_bleu # use 'stupid' BLEU+1 +learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) +gamma=0 # use SVM reg +sample_from=kbest # use kbest lists (as opposed to forest) +filter=uniq # only unique entries in kbest (surface form) +pair_sampling=XYX # +hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here +pair_threshold=0 # minimum distance in BLEU (here: > 0) +loss_margin=0 # update if correctly ranked, but within this margin diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output new file mode 100644 index 00000000..7cd09dbf --- /dev/null +++ b/training/dtrain/examples/standard/expected-output @@ -0,0 +1,91 @@ + cdec cfg './cdec.ini' +Loading the LM will be faster if you build a binary file. +Reading ./nc-wmt11.en.srilm.gz +----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 +**************************************************************************************************** + Example feature: Shape_S00000_T00000 +Seeding random number sequence to 2679584485 + +dtrain +Parameters: + k 100 + N 4 + T 2 + scorer 'stupid_bleu' + sample from 'kbest' + filter 'uniq' + learning rate 1 + gamma 0 + loss margin 0 + faster perceptron 1 + pairs 'XYX' + hi lo 0.1 + pair threshold 0 + select weights 'VOID' + l1 reg 0 'none' + max pairs 4294967295 + cdec cfg './cdec.ini' + input './nc-wmt11.de.gz' + refs './nc-wmt11.en.gz' + output '-' + stop_after 10 +(a dot represents 10 inputs) +Iteration #1 of 2. + . 10 +Stopping after 10 input sentences. +WEIGHTS + Glue = -576 + WordPenalty = +417.79 + LanguageModel = +5117.5 + LanguageModel_OOV = -1307 + PhraseModel_0 = -1612 + PhraseModel_1 = -2159.6 + PhraseModel_2 = -677.36 + PhraseModel_3 = +2663.8 + PhraseModel_4 = -1025.9 + PhraseModel_5 = -8 + PhraseModel_6 = +70 + PassThrough = -1455 + --- + 1best avg score: 0.27697 (+0.27697) + 1best avg model score: -47918 (-47918) + avg # pairs: 581.9 (meaningless) + avg # rank err: 581.9 + avg # margin viol: 0 + non0 feature count: 703 + avg list sz: 90.9 + avg f count: 100.09 +(time 0.25 min, 1.5 s/S) + +Iteration #2 of 2. + . 10 +WEIGHTS + Glue = -622 + WordPenalty = +898.56 + LanguageModel = +8066.2 + LanguageModel_OOV = -2590 + PhraseModel_0 = -4335.8 + PhraseModel_1 = -5864.4 + PhraseModel_2 = -1729.8 + PhraseModel_3 = +2831.9 + PhraseModel_4 = -5384.8 + PhraseModel_5 = +1449 + PhraseModel_6 = +480 + PassThrough = -2578 + --- + 1best avg score: 0.37119 (+0.094226) + 1best avg model score: -1.3174e+05 (-83822) + avg # pairs: 584.1 (meaningless) + avg # rank err: 584.1 + avg # margin viol: 0 + non0 feature count: 1115 + avg list sz: 91.3 + avg f count: 90.755 +(time 0.3 min, 1.8 s/S) + +Writing weights file to '-' ... +done + +--- +Best iteration: 2 [SCORE 'stupid_bleu'=0.37119]. +This took 0.55 min. diff --git a/training/dtrain/examples/standard/nc-wmt11.de.gz b/training/dtrain/examples/standard/nc-wmt11.de.gz Binary files differnew file mode 100644 index 00000000..0741fd92 --- /dev/null +++ b/training/dtrain/examples/standard/nc-wmt11.de.gz diff --git a/training/dtrain/examples/standard/nc-wmt11.en.gz b/training/dtrain/examples/standard/nc-wmt11.en.gz Binary files differnew file mode 100644 index 00000000..1c0bd401 --- /dev/null +++ b/training/dtrain/examples/standard/nc-wmt11.en.gz diff --git a/training/dtrain/examples/standard/nc-wmt11.en.srilm.gz b/training/dtrain/examples/standard/nc-wmt11.en.srilm.gz Binary files differnew file mode 100644 index 00000000..7ce81057 --- /dev/null +++ b/training/dtrain/examples/standard/nc-wmt11.en.srilm.gz diff --git a/training/dtrain/examples/standard/nc-wmt11.grammar.gz b/training/dtrain/examples/standard/nc-wmt11.grammar.gz Binary files differnew file mode 100644 index 00000000..ce4024a1 --- /dev/null +++ b/training/dtrain/examples/standard/nc-wmt11.grammar.gz diff --git a/training/dtrain/examples/toy/cdec.ini b/training/dtrain/examples/toy/cdec.ini new file mode 100644 index 00000000..b14f4819 --- /dev/null +++ b/training/dtrain/examples/toy/cdec.ini @@ -0,0 +1,3 @@ +formalism=scfg +add_pass_through_rules=true +grammar=grammar.gz diff --git a/training/dtrain/examples/toy/dtrain.ini b/training/dtrain/examples/toy/dtrain.ini new file mode 100644 index 00000000..cd715f26 --- /dev/null +++ b/training/dtrain/examples/toy/dtrain.ini @@ -0,0 +1,13 @@ +decoder_config=cdec.ini +input=src +refs=tgt +output=- +print_weights=logp shell_rule house_rule small_rule little_rule PassThrough +k=4 +N=4 +epochs=2 +scorer=bleu +sample_from=kbest +filter=uniq +pair_sampling=all +learning_rate=1 diff --git a/training/dtrain/examples/toy/expected-output b/training/dtrain/examples/toy/expected-output new file mode 100644 index 00000000..1da2aadd --- /dev/null +++ b/training/dtrain/examples/toy/expected-output @@ -0,0 +1,77 @@ +Warning: hi_lo only works with pair_sampling XYX. + cdec cfg 'cdec.ini' +Seeding random number sequence to 1664825829 + +dtrain +Parameters: + k 4 + N 4 + T 2 + scorer 'bleu' + sample from 'kbest' + filter 'uniq' + learning rate 1 + gamma 0 + loss margin 0 + pairs 'all' + pair threshold 0 + select weights 'last' + l1 reg 0 'none' + max pairs 4294967295 + cdec cfg 'cdec.ini' + input 'src' + refs 'tgt' + output '-' +(a dot represents 10 inputs) +Iteration #1 of 2. + 2 +WEIGHTS + logp = +0 + shell_rule = -1 + house_rule = +2 + small_rule = -2 + little_rule = +3 + PassThrough = -5 + --- + 1best avg score: 0.5 (+0.5) + 1best avg model score: 2.5 (+2.5) + avg # pairs: 4 + avg # rank err: 1.5 + avg # margin viol: 0 + non0 feature count: 6 + avg list sz: 4 + avg f count: 2.875 +(time 0 min, 0 s/S) + +Iteration #2 of 2. + 2 +WEIGHTS + logp = +0 + shell_rule = -1 + house_rule = +2 + small_rule = -2 + little_rule = +3 + PassThrough = -5 + --- + 1best avg score: 1 (+0.5) + 1best avg model score: 5 (+2.5) + avg # pairs: 5 + avg # rank err: 0 + avg # margin viol: 0 + non0 feature count: 6 + avg list sz: 4 + avg f count: 3 +(time 0 min, 0 s/S) + +Writing weights file to '-' ... +house_rule 2 +little_rule 3 +Glue -4 +PassThrough -5 +small_rule -2 +shell_rule -1 +done + +--- +Best iteration: 2 [SCORE 'bleu'=1]. +This took 0 min. diff --git a/training/dtrain/examples/toy/grammar.gz b/training/dtrain/examples/toy/grammar.gz Binary files differnew file mode 100644 index 00000000..8eb0d29e --- /dev/null +++ b/training/dtrain/examples/toy/grammar.gz diff --git a/training/dtrain/examples/toy/src b/training/dtrain/examples/toy/src new file mode 100644 index 00000000..87e39ef2 --- /dev/null +++ b/training/dtrain/examples/toy/src @@ -0,0 +1,2 @@ +ich sah ein kleines haus +ich fand ein kleines haus diff --git a/training/dtrain/examples/toy/tgt b/training/dtrain/examples/toy/tgt new file mode 100644 index 00000000..174926b3 --- /dev/null +++ b/training/dtrain/examples/toy/tgt @@ -0,0 +1,2 @@ +i saw a little house +i found a little house diff --git a/training/dtrain/kbestget.h b/training/dtrain/kbestget.h new file mode 100644 index 00000000..dd8882e1 --- /dev/null +++ b/training/dtrain/kbestget.h @@ -0,0 +1,152 @@ +#ifndef _DTRAIN_KBESTGET_H_ +#define _DTRAIN_KBESTGET_H_ + +#include "kbest.h" // cdec +#include "sentence_metadata.h" + +#include "verbose.h" +#include "viterbi.h" +#include "ff_register.h" +#include "decoder.h" +#include "weights.h" +#include "logval.h" + +using namespace std; + +namespace dtrain +{ + + +typedef double score_t; + +struct ScoredHyp +{ + vector<WordID> w; + SparseVector<double> f; + score_t model; + score_t score; + unsigned rank; +}; + +struct LocalScorer +{ + unsigned N_; + vector<score_t> w_; + + virtual score_t + Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0; + + void Reset() {} // only for approx bleu + + inline void + Init(unsigned N, vector<score_t> weights) + { + assert(N > 0); + N_ = N; + if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_); + else w_ = weights; + } + + inline score_t + brevity_penalty(const unsigned hyp_len, const unsigned ref_len) + { + if (hyp_len > ref_len) return 1; + return exp(1 - (score_t)ref_len/hyp_len); + } +}; + +struct HypSampler : public DecoderObserver +{ + LocalScorer* scorer_; + vector<WordID>* ref_; + unsigned f_count_, sz_; + virtual vector<ScoredHyp>* GetSamples()=0; + inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; } + inline void SetRef(vector<WordID>& ref) { ref_ = &ref; } + inline unsigned get_f_count() { return f_count_; } + inline unsigned get_sz() { return sz_; } +}; +//////////////////////////////////////////////////////////////////////////////// + + + + +struct KBestGetter : public HypSampler +{ + const unsigned k_; + const string filter_type_; + vector<ScoredHyp> s_; + unsigned src_len_; + + KBestGetter(const unsigned k, const string filter_type) : + k_(k), filter_type_(filter_type) {} + + virtual void + NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) + { + src_len_ = smeta.GetSourceLength(); + KBestScored(*hg); + } + + vector<ScoredHyp>* GetSamples() { return &s_; } + + void + KBestScored(const Hypergraph& forest) + { + if (filter_type_ == "uniq") { + KBestUnique(forest); + } else if (filter_type_ == "not") { + KBestNoFilter(forest); + } + } + + void + KBestUnique(const Hypergraph& forest) + { + s_.clear(); sz_ = f_count_ = 0; + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, + KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_); + for (unsigned i = 0; i < k_; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique, + prob_t, EdgeProb>::Derivation* d = + kbest.LazyKthBest(forest.nodes_.size() - 1, i); + if (!d) break; + ScoredHyp h; + h.w = d->yield; + h.f = d->feature_values; + h.model = log(d->score); + h.rank = i; + h.score = scorer_->Score(h.w, *ref_, i, src_len_); + s_.push_back(h); + sz_++; + f_count_ += h.f.size(); + } + } + + void + KBestNoFilter(const Hypergraph& forest) + { + s_.clear(); sz_ = f_count_ = 0; + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_); + for (unsigned i = 0; i < k_; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(forest.nodes_.size() - 1, i); + if (!d) break; + ScoredHyp h; + h.w = d->yield; + h.f = d->feature_values; + h.model = log(d->score); + h.rank = i; + h.score = scorer_->Score(h.w, *ref_, i, src_len_); + s_.push_back(h); + sz_++; + f_count_ += h.f.size(); + } + } +}; + + +} // namespace + +#endif + diff --git a/training/dtrain/ksampler.h b/training/dtrain/ksampler.h new file mode 100644 index 00000000..bc2f56cd --- /dev/null +++ b/training/dtrain/ksampler.h @@ -0,0 +1,61 @@ +#ifndef _DTRAIN_KSAMPLER_H_ +#define _DTRAIN_KSAMPLER_H_ + +#include "hg_sampler.h" // cdec +#include "kbestget.h" +#include "score.h" + +namespace dtrain +{ + +bool +cmp_hyp_by_model_d(ScoredHyp a, ScoredHyp b) +{ + return a.model > b.model; +} + +struct KSampler : public HypSampler +{ + const unsigned k_; + vector<ScoredHyp> s_; + MT19937* prng_; + score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>); + unsigned src_len_; + + explicit KSampler(const unsigned k, MT19937* prng) : + k_(k), prng_(prng) {} + + virtual void + NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) + { + src_len_ = smeta.GetSourceLength(); + ScoredSamples(*hg); + } + + vector<ScoredHyp>* GetSamples() { return &s_; } + + void ScoredSamples(const Hypergraph& forest) { + s_.clear(); sz_ = f_count_ = 0; + std::vector<HypergraphSampler::Hypothesis> samples; + HypergraphSampler::sample_hypotheses(forest, k_, prng_, &samples); + for (unsigned i = 0; i < k_; ++i) { + ScoredHyp h; + h.w = samples[i].words; + h.f = samples[i].fmap; + h.model = log(samples[i].model_score); + h.rank = i; + h.score = scorer_->Score(h.w, *ref_, i, src_len_); + s_.push_back(h); + sz_++; + f_count_ += h.f.size(); + } + sort(s_.begin(), s_.end(), cmp_hyp_by_model_d); + for (unsigned i = 0; i < s_.size(); i++) s_[i].rank = i; + } +}; + + +} // namespace + +#endif + diff --git a/training/dtrain/lplp.rb b/training/dtrain/lplp.rb new file mode 100755 index 00000000..86e835e8 --- /dev/null +++ b/training/dtrain/lplp.rb @@ -0,0 +1,123 @@ +# lplp.rb + +# norms +def l0(feature_column, n) + if feature_column.size >= n then return 1 else return 0 end +end + +def l1(feature_column, n=-1) + return feature_column.map { |i| i.abs }.reduce { |sum,i| sum+i } +end + +def l2(feature_column, n=-1) + return Math.sqrt feature_column.map { |i| i.abs2 }.reduce { |sum,i| sum+i } +end + +def linfty(feature_column, n=-1) + return feature_column.map { |i| i.abs }.max +end + +# stats +def median(feature_column, n) + return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0}).sort[feature_column.size/2] +end + +def mean(feature_column, n) + return feature_column.reduce { |sum, i| sum+i } / n +end + +# selection +def select_k(weights, norm_fun, n, k=10000) + weights.sort{|a,b| norm_fun.call(b[1], n) <=> norm_fun.call(a[1], n)}.each { |p| + puts "#{p[0]}\t#{mean(p[1], n)}" + k -= 1 + if k == 0 then break end + } +end + +def cut(weights, norm_fun, n, epsilon=0.0001) + weights.each { |k,v| + if norm_fun.call(v, n).abs >= epsilon + puts "#{k}\t#{mean(v, n)}" + end + } +end + +# test +def _test() + puts + w = {} + w["a"] = [1, 2, 3] + w["b"] = [1, 2] + w["c"] = [66] + w["d"] = [10, 20, 30] + n = 3 + puts w.to_s + puts + puts "select_k" + puts "l0 expect ad" + select_k(w, method(:l0), n, 2) + puts "l1 expect cd" + select_k(w, method(:l1), n, 2) + puts "l2 expect c" + select_k(w, method(:l2), n, 1) + puts + puts "cut" + puts "l1 expect cd" + cut(w, method(:l1), n, 7) + puts + puts "median" + a = [1,2,3,4,5] + puts a.to_s + puts median(a, 5) + puts + puts "#{median(a, 7)} <- that's because we add missing 0s:" + puts a.concat(0.step(7-a.size-1).map{|i|0}).to_s + puts + puts "mean expect bc" + w.clear + w["a"] = [2] + w["b"] = [2.1] + w["c"] = [2.2] + cut(w, method(:mean), 1, 2.05) + exit +end +#_test() + + +def usage() + puts "lplp.rb <l0,l1,l2,linfty,mean,median> <cut|select_k> <k|threshold> <#shards> < <input>" + puts " l0...: norms for selection" + puts "select_k: only output top k (according to the norm of their column vector) features" + puts " cut: output features with weight >= threshold" + puts " n: if we do not have a shard count use this number for averaging" + exit 1 +end + +if ARGV.size < 4 then usage end +norm_fun = method(ARGV[0].to_sym) +type = ARGV[1] +x = ARGV[2].to_f +shard_count = ARGV[3].to_f + +STDIN.set_encoding 'utf-8' +STDOUT.set_encoding 'utf-8' + +w = {} +while line = STDIN.gets + key, val = line.split /\s+/ + if w.has_key? key + w[key].push val.to_f + else + w[key] = [val.to_f] + end +end + +if type == 'cut' + cut(w, norm_fun, shard_count, x) +elsif type == 'select_k' + select_k(w, norm_fun, shard_count, x) +else + puts "oh oh" +end + diff --git a/training/dtrain/pairsampling.h b/training/dtrain/pairsampling.h new file mode 100644 index 00000000..3f67e209 --- /dev/null +++ b/training/dtrain/pairsampling.h @@ -0,0 +1,140 @@ +#ifndef _DTRAIN_PAIRSAMPLING_H_ +#define _DTRAIN_PAIRSAMPLING_H_ + +namespace dtrain +{ + + +bool +accept_pair(score_t a, score_t b, score_t threshold) +{ + if (fabs(a - b) < threshold) return false; + return true; +} + +bool +cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b) +{ + return a.score > b.score; +} + +inline void +all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float _unused=1) +{ + sort(s->begin(), s->end(), cmp_hyp_by_score_d); + unsigned sz = s->size(); + bool b = false; + unsigned count = 0; + for (unsigned i = 0; i < sz-1; i++) { + for (unsigned j = i+1; j < sz; j++) { + if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; + if (threshold > 0) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) + training.push_back(make_pair((*s)[i], (*s)[j])); + } else { + if ((*s)[i].score != (*s)[j].score) + training.push_back(make_pair((*s)[i], (*s)[j])); + } + if (++count == max) { + b = true; + break; + } + } + if (b) break; + } +} + +/* + * multipartite ranking + * sort (descending) by bleu + * compare top X to middle Y and low X + * cmp middle Y to low X + */ + +inline void +partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float hi_lo) +{ + unsigned sz = s->size(); + if (sz < 2) return; + sort(s->begin(), s->end(), cmp_hyp_by_score_d); + unsigned sep = round(sz*hi_lo); + unsigned sep_hi = sep; + if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi; + else sep_hi = 1; + bool b = false; + unsigned count = 0; + for (unsigned i = 0; i < sep_hi; i++) { + for (unsigned j = sep_hi; j < sz; j++) { + if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; + if (threshold > 0) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) + training.push_back(make_pair((*s)[i], (*s)[j])); + } else { + if ((*s)[i].score != (*s)[j].score) + training.push_back(make_pair((*s)[i], (*s)[j])); + } + if (++count == max) { + b = true; + break; + } + } + if (b) break; + } + unsigned sep_lo = sz-sep; + while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo; + for (unsigned i = sep_hi; i < sz-sep_lo; i++) { + for (unsigned j = sz-sep_lo; j < sz; j++) { + if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; + if (threshold > 0) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) + training.push_back(make_pair((*s)[i], (*s)[j])); + } else { + if ((*s)[i].score != (*s)[j].score) + training.push_back(make_pair((*s)[i], (*s)[j])); + } + if (++count == max) return; + } + } +} + +/* + * pair sampling as in + * 'Tuning as Ranking' (Hopkins & May, 2011) + * count = 5000 + * threshold = 5% BLEU (0.05 for param 3) + * cut = top 50 + */ +bool +_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b) +{ + return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score)); +} +inline void +PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0) +{ + unsigned max_count = 5000, count = 0, sz = s->size(); + bool b = false; + for (unsigned i = 0; i < sz-1; i++) { + for (unsigned j = i+1; j < sz; j++) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) { + training.push_back(make_pair((*s)[i], (*s)[j])); + if (++count == max_count) { + b = true; + break; + } + } + } + if (b) break; + } + if (training.size() > 50) { + sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d); + training.erase(training.begin()+50, training.end()); + } + return; +} + + +} // namespace + +#endif + diff --git a/training/dtrain/parallelize.rb b/training/dtrain/parallelize.rb new file mode 100755 index 00000000..e661416e --- /dev/null +++ b/training/dtrain/parallelize.rb @@ -0,0 +1,149 @@ +#!/usr/bin/env ruby + +require 'trollop' + +def usage + STDERR.write "Usage: " + STDERR.write "ruby parallelize.rb -c <dtrain.ini> [-e <epochs=10>] [--randomize/-z] [--reshard/-y] -s <#shards|0> [-p <at once=9999>] -i <input> -r <refs> [--qsub/-q] [--dtrain_binary <path to dtrain binary>] [-l \"l2 select_k 100000\"]\n" + exit 1 +end + +opts = Trollop::options do + opt :config, "dtrain config file", :type => :string + opt :epochs, "number of epochs", :type => :int, :default => 10 + opt :lplp_args, "arguments for lplp.rb", :type => :string, :default => "l2 select_k 100000" + opt :randomize, "randomize shards before each epoch", :type => :bool, :short => '-z', :default => false + opt :reshard, "reshard after each epoch", :type => :bool, :short => '-y', :default => false + opt :shards, "number of shards", :type => :int + opt :processes_at_once, "have this number (max) running at the same time", :type => :int, :default => 9999 + opt :input, "input", :type => :string + opt :references, "references", :type => :string + opt :qsub, "use qsub", :type => :bool, :default => false + opt :dtrain_binary, "path to dtrain binary", :type => :string +end +usage if not opts[:config]&&opts[:shards]&&opts[:input]&&opts[:references] + + +dtrain_dir = File.expand_path File.dirname(__FILE__) +if not opts[:dtrain_binary] + dtrain_bin = "#{dtrain_dir}/dtrain" +else + dtrain_bin = opts[:dtrain_binary] +end +ruby = '/usr/bin/ruby' +lplp_rb = "#{dtrain_dir}/lplp.rb" +lplp_args = opts[:lplp_args] +cat = '/bin/cat' + +ini = opts[:config] +epochs = opts[:epochs] +rand = opts[:randomize] +reshard = opts[:reshard] +predefined_shards = false +if opts[:shards] == 0 + predefined_shards = true + num_shards = 0 +else + num_shards = opts[:shards] +end +input = opts[:input] +refs = opts[:references] +use_qsub = opts[:qsub] +shards_at_once = opts[:processes_at_once] + +`mkdir work` + +def make_shards(input, refs, num_shards, epoch, rand) + lc = `wc -l #{input}`.split.first.to_i + index = (0..lc-1).to_a + index.reverse! + index.shuffle! if rand + shard_sz = lc / num_shards + leftover = lc % num_shards + in_f = File.new input, 'r' + in_lines = in_f.readlines + refs_f = File.new refs, 'r' + refs_lines = refs_f.readlines + shard_in_files = [] + shard_refs_files = [] + in_fns = [] + refs_fns = [] + 0.upto(num_shards-1) { |shard| + in_fn = "work/shard.#{shard}.#{epoch}.in" + shard_in = File.new in_fn, 'w+' + in_fns << in_fn + refs_fn = "work/shard.#{shard}.#{epoch}.refs" + shard_refs = File.new refs_fn, 'w+' + refs_fns << refs_fn + 0.upto(shard_sz-1) { |i| + j = index.pop + shard_in.write in_lines[j] + shard_refs.write refs_lines[j] + } + shard_in_files << shard_in + shard_refs_files << shard_refs + } + while leftover > 0 + j = index.pop + shard_in_files[-1].write in_lines[j] + shard_refs_files[-1].write refs_lines[j] + leftover -= 1 + end + (shard_in_files + shard_refs_files).each do |f| f.close end + in_f.close + refs_f.close + return [in_fns, refs_fns] +end + +input_files = [] +refs_files = [] +if predefined_shards + input_files = File.new(input).readlines.map {|i| i.strip } + refs_files = File.new(refs).readlines.map {|i| i.strip } + num_shards = input_files.size +else + input_files, refs_files = make_shards input, refs, num_shards, 0, rand +end + +0.upto(epochs-1) { |epoch| + puts "epoch #{epoch+1}" + pids = [] + input_weights = '' + if epoch > 0 then input_weights = "--input_weights work/weights.#{epoch-1}" end + weights_files = [] + shard = 0 + remaining_shards = num_shards + while remaining_shards > 0 + shards_at_once.times { + break if remaining_shards==0 + qsub_str_start = qsub_str_end = '' + local_end = '' + if use_qsub + qsub_str_start = "qsub -cwd -sync y -b y -j y -o work/out.#{shard}.#{epoch} -N dtrain.#{shard}.#{epoch} \"" + qsub_str_end = "\"" + local_end = '' + else + local_end = "&>work/out.#{shard}.#{epoch}" + end + pids << Kernel.fork { + `#{qsub_str_start}#{dtrain_bin} -c #{ini}\ + --input #{input_files[shard]}\ + --refs #{refs_files[shard]} #{input_weights}\ + --output work/weights.#{shard}.#{epoch}#{qsub_str_end} #{local_end}` + } + weights_files << "work/weights.#{shard}.#{epoch}" + shard += 1 + remaining_shards -= 1 + } + pids.each { |pid| Process.wait(pid) } + pids.clear + end + `#{cat} work/weights.*.#{epoch} > work/weights_cat` + `#{ruby} #{lplp_rb} #{lplp_args} #{num_shards} < work/weights_cat > work/weights.#{epoch}` + if rand and reshard and epoch+1!=epochs + input_files, refs_files = make_shards input, refs, num_shards, epoch+1, rand + end +} + +`rm work/weights_cat` + diff --git a/training/dtrain/score.cc b/training/dtrain/score.cc new file mode 100644 index 00000000..96d6e10a --- /dev/null +++ b/training/dtrain/score.cc @@ -0,0 +1,283 @@ +#include "score.h" + +namespace dtrain +{ + + +/* + * bleu + * + * as in "BLEU: a Method for Automatic Evaluation + * of Machine Translation" + * (Papineni et al. '02) + * + * NOTE: 0 if for one n \in {1..N} count is 0 + */ +score_t +BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len) +{ + if (hyp_len == 0 || ref_len == 0) return 0.; + unsigned M = N_; + vector<score_t> v = w_; + if (ref_len < N_) { + M = ref_len; + for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M); + } + score_t sum = 0; + for (unsigned i = 0; i < M; i++) { + if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) return 0.; + sum += v[i] * log((score_t)counts.clipped_[i]/counts.sum_[i]); + } + return brevity_penalty(hyp_len, ref_len) * exp(sum); +} + +score_t +BleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned /*rank*/, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (hyp_len == 0 || ref_len == 0) return 0.; + NgramCounts counts = make_ngram_counts(hyp, ref, N_); + return Bleu(counts, hyp_len, ref_len); +} + +/* + * 'stupid' bleu + * + * as in "ORANGE: a Method for Evaluating + * Automatic Evaluation Metrics + * for Machine Translation" + * (Lin & Och '04) + * + * NOTE: 0 iff no 1gram match ('grounded') + */ +score_t +StupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned /*rank*/, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (hyp_len == 0 || ref_len == 0) return 0.; + NgramCounts counts = make_ngram_counts(hyp, ref, N_); + unsigned M = N_; + vector<score_t> v = w_; + if (ref_len < N_) { + M = ref_len; + for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M); + } + score_t sum = 0, add = 0; + for (unsigned i = 0; i < M; i++) { + if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.; + if (i == 1) add = 1; + sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add))); + } + return brevity_penalty(hyp_len, ref_len) * exp(sum); +} + +/* + * fixed 'stupid' bleu + * + * as in "Optimizing for Sentence-Level BLEU+1 + * Yields Short Translations" + * (Nakov et al. '12) + */ +score_t +FixedStupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned /*rank*/, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (hyp_len == 0 || ref_len == 0) return 0.; + NgramCounts counts = make_ngram_counts(hyp, ref, N_); + unsigned M = N_; + vector<score_t> v = w_; + if (ref_len < N_) { + M = ref_len; + for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M); + } + score_t sum = 0, add = 0; + for (unsigned i = 0; i < M; i++) { + if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.; + if (i == 1) add = 1; + sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add))); + } + return brevity_penalty(hyp_len, ref_len+1) * exp(sum); // <- fix +} + +/* + * smooth bleu + * + * as in "An End-to-End Discriminative Approach + * to Machine Translation" + * (Liang et al. '06) + * + * NOTE: max is 0.9375 (with N=4) + */ +score_t +SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned /*rank*/, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (hyp_len == 0 || ref_len == 0) return 0.; + NgramCounts counts = make_ngram_counts(hyp, ref, N_); + unsigned M = N_; + if (ref_len < N_) M = ref_len; + score_t sum = 0.; + vector<score_t> i_bleu; + for (unsigned i = 0; i < M; i++) i_bleu.push_back(0.); + for (unsigned i = 0; i < M; i++) { + if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) { + break; + } else { + score_t i_ng = log((score_t)counts.clipped_[i]/counts.sum_[i]); + for (unsigned j = i; j < M; j++) { + i_bleu[j] += (1/((score_t)j+1)) * i_ng; + } + } + sum += exp(i_bleu[i])/pow(2.0, (double)(N_-i)); + } + return brevity_penalty(hyp_len, ref_len) * sum; +} + +/* + * 'sum' bleu + * + * sum up Ngram precisions + */ +score_t +SumBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned /*rank*/, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (hyp_len == 0 || ref_len == 0) return 0.; + NgramCounts counts = make_ngram_counts(hyp, ref, N_); + unsigned M = N_; + if (ref_len < N_) M = ref_len; + score_t sum = 0.; + unsigned j = 1; + for (unsigned i = 0; i < M; i++) { + if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break; + sum += ((score_t)counts.clipped_[i]/counts.sum_[i])/pow(2.0, (double) (N_-j+1)); + j++; + } + return brevity_penalty(hyp_len, ref_len) * sum; +} + +/* + * 'sum' (exp) bleu + * + * sum up exp(Ngram precisions) + */ +score_t +SumExpBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned /*rank*/, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (hyp_len == 0 || ref_len == 0) return 0.; + NgramCounts counts = make_ngram_counts(hyp, ref, N_); + unsigned M = N_; + if (ref_len < N_) M = ref_len; + score_t sum = 0.; + unsigned j = 1; + for (unsigned i = 0; i < M; i++) { + if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break; + sum += exp(((score_t)counts.clipped_[i]/counts.sum_[i]))/pow(2.0, (double) (N_-j+1)); + j++; + } + return brevity_penalty(hyp_len, ref_len) * sum; +} + +/* + * 'sum' (whatever) bleu + * + * sum up exp(weight * log(Ngram precisions)) + */ +score_t +SumWhateverBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned /*rank*/, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (hyp_len == 0 || ref_len == 0) return 0.; + NgramCounts counts = make_ngram_counts(hyp, ref, N_); + unsigned M = N_; + vector<score_t> v = w_; + if (ref_len < N_) { + M = ref_len; + for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M); + } + score_t sum = 0.; + unsigned j = 1; + for (unsigned i = 0; i < M; i++) { + if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break; + sum += exp(v[i] * log(((score_t)counts.clipped_[i]/counts.sum_[i])))/pow(2.0, (double) (N_-j+1)); + j++; + } + return brevity_penalty(hyp_len, ref_len) * sum; +} + +/* + * approx. bleu + * + * as in "Online Large-Margin Training of Syntactic + * and Structural Translation Features" + * (Chiang et al. '08) + * + * NOTE: Needs some more code in dtrain.cc . + * No scaling by src len. + */ +score_t +ApproxBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned rank, const unsigned src_len) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (ref_len == 0) return 0.; + score_t score = 0.; + NgramCounts counts(N_); + if (hyp_len > 0) { + counts = make_ngram_counts(hyp, ref, N_); + NgramCounts tmp = glob_onebest_counts_ + counts; + score = Bleu(tmp, hyp_len, ref_len); + } + if (rank == 0) { // 'context of 1best translations' + glob_onebest_counts_ += counts; + glob_onebest_counts_ *= discount_; + glob_hyp_len_ = discount_ * (glob_hyp_len_ + hyp_len); + glob_ref_len_ = discount_ * (glob_ref_len_ + ref_len); + glob_src_len_ = discount_ * (glob_src_len_ + src_len); + } + return score; +} + +/* + * Linear (Corpus) Bleu + * + * as in "Lattice Minimum Bayes-Risk Decoding + * for Statistical Machine Translation" + * (Tromble et al. '08) + * + */ +score_t +LinearBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, + const unsigned rank, const unsigned /*src_len*/) +{ + unsigned hyp_len = hyp.size(), ref_len = ref.size(); + if (ref_len == 0) return 0.; + unsigned M = N_; + if (ref_len < N_) M = ref_len; + NgramCounts counts(M); + if (hyp_len > 0) + counts = make_ngram_counts(hyp, ref, M); + score_t ret = 0.; + for (unsigned i = 0; i < M; i++) { + if (counts.sum_[i] == 0 || onebest_counts_.sum_[i] == 0) break; + ret += counts.sum_[i]/onebest_counts_.sum_[i]; + } + ret = -(hyp_len/(score_t)onebest_len_) + (1./M) * ret; + if (rank == 0) { + onebest_len_ += hyp_len; + onebest_counts_ += counts; + } + return ret; +} + + +} // namespace + diff --git a/training/dtrain/score.h b/training/dtrain/score.h new file mode 100644 index 00000000..bddaa071 --- /dev/null +++ b/training/dtrain/score.h @@ -0,0 +1,217 @@ +#ifndef _DTRAIN_SCORE_H_ +#define _DTRAIN_SCORE_H_ + +#include "kbestget.h" + +using namespace std; + +namespace dtrain +{ + + +struct NgramCounts +{ + unsigned N_; + map<unsigned, score_t> clipped_; + map<unsigned, score_t> sum_; + + NgramCounts(const unsigned N) : N_(N) { Zero(); } + + inline void + operator+=(const NgramCounts& rhs) + { + if (rhs.N_ > N_) Resize(rhs.N_); + for (unsigned i = 0; i < N_; i++) { + this->clipped_[i] += rhs.clipped_.find(i)->second; + this->sum_[i] += rhs.sum_.find(i)->second; + } + } + + inline const NgramCounts + operator+(const NgramCounts &other) const + { + NgramCounts result = *this; + result += other; + return result; + } + + inline void + operator*=(const score_t rhs) + { + for (unsigned i = 0; i < N_; i++) { + this->clipped_[i] *= rhs; + this->sum_[i] *= rhs; + } + } + + inline void + Add(const unsigned count, const unsigned ref_count, const unsigned i) + { + assert(i < N_); + if (count > ref_count) { + clipped_[i] += ref_count; + } else { + clipped_[i] += count; + } + sum_[i] += count; + } + + inline void + Zero() + { + for (unsigned i = 0; i < N_; i++) { + clipped_[i] = 0.; + sum_[i] = 0.; + } + } + + inline void + One() + { + for (unsigned i = 0; i < N_; i++) { + clipped_[i] = 1.; + sum_[i] = 1.; + } + } + + inline void + Print() + { + for (unsigned i = 0; i < N_; i++) { + cout << i+1 << "grams (clipped):\t" << clipped_[i] << endl; + cout << i+1 << "grams:\t\t\t" << sum_[i] << endl; + } + } + + inline void Resize(unsigned N) + { + if (N == N_) return; + else if (N > N_) { + for (unsigned i = N_; i < N; i++) { + clipped_[i] = 0.; + sum_[i] = 0.; + } + } else { // N < N_ + for (unsigned i = N_-1; i > N-1; i--) { + clipped_.erase(i); + sum_.erase(i); + } + } + N_ = N; + } +}; + +typedef map<vector<WordID>, unsigned> Ngrams; + +inline Ngrams +make_ngrams(const vector<WordID>& s, const unsigned N) +{ + Ngrams ngrams; + vector<WordID> ng; + for (size_t i = 0; i < s.size(); i++) { + ng.clear(); + for (unsigned j = i; j < min(i+N, s.size()); j++) { + ng.push_back(s[j]); + ngrams[ng]++; + } + } + return ngrams; +} + +inline NgramCounts +make_ngram_counts(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned N) +{ + Ngrams hyp_ngrams = make_ngrams(hyp, N); + Ngrams ref_ngrams = make_ngrams(ref, N); + NgramCounts counts(N); + Ngrams::iterator it; + Ngrams::iterator ti; + for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) { + ti = ref_ngrams.find(it->first); + if (ti != ref_ngrams.end()) { + counts.Add(it->second, ti->second, it->first.size() - 1); + } else { + counts.Add(it->second, 0, it->first.size() - 1); + } + } + return counts; +} + +struct BleuScorer : public LocalScorer +{ + score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len); + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; + +struct StupidBleuScorer : public LocalScorer +{ + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; + +struct FixedStupidBleuScorer : public LocalScorer +{ + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; + +struct SmoothBleuScorer : public LocalScorer +{ + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; + +struct SumBleuScorer : public LocalScorer +{ + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; + +struct SumExpBleuScorer : public LocalScorer +{ + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; + +struct SumWhateverBleuScorer : public LocalScorer +{ + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); +}; + +struct ApproxBleuScorer : public BleuScorer +{ + NgramCounts glob_onebest_counts_; + unsigned glob_hyp_len_, glob_ref_len_, glob_src_len_; + score_t discount_; + + ApproxBleuScorer(unsigned N, score_t d) : glob_onebest_counts_(NgramCounts(N)), discount_(d) + { + glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0; + } + + inline void Reset() { + glob_onebest_counts_.Zero(); + glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0.; + } + + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len); +}; + +struct LinearBleuScorer : public BleuScorer +{ + unsigned onebest_len_; + NgramCounts onebest_counts_; + + LinearBleuScorer(unsigned N) : onebest_len_(1), onebest_counts_(N) + { + onebest_counts_.One(); + } + + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned /*src_len*/); + + inline void Reset() { + onebest_len_ = 1; + onebest_counts_.One(); + } +}; + + +} // namespace + +#endif + |