diff options
| author | Michael Denkowski <michael.j.denkowski@gmail.com> | 2012-12-22 16:01:23 -0500 | 
|---|---|---|
| committer | Michael Denkowski <michael.j.denkowski@gmail.com> | 2012-12-22 16:01:23 -0500 | 
| commit | 597d89c11db53e91bc011eab70fd613bbe6453e8 (patch) | |
| tree | 83c87c07d1ff6d3ee4e3b1626f7eddd49c61095b /training/dtrain/pairsampling.h | |
| parent | 65e958ff2678a41c22be7171456a63f002ef370b (diff) | |
| parent | 201af2acd394415a05072fbd53d42584875aa4b4 (diff) | |
Merge branch 'master' of git://github.com/redpony/cdec
Diffstat (limited to 'training/dtrain/pairsampling.h')
| -rw-r--r-- | training/dtrain/pairsampling.h | 149 | 
1 files changed, 149 insertions, 0 deletions
| diff --git a/training/dtrain/pairsampling.h b/training/dtrain/pairsampling.h new file mode 100644 index 00000000..84be1efb --- /dev/null +++ b/training/dtrain/pairsampling.h @@ -0,0 +1,149 @@ +#ifndef _DTRAIN_PAIRSAMPLING_H_ +#define _DTRAIN_PAIRSAMPLING_H_ + +namespace dtrain +{ + + +bool +accept_pair(score_t a, score_t b, score_t threshold) +{ +  if (fabs(a - b) < threshold) return false; +  return true; +} + +bool +cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b) +{ +  return a.score > b.score; +} + +inline void +all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, float _unused=1) +{ +  sort(s->begin(), s->end(), cmp_hyp_by_score_d); +  unsigned sz = s->size(); +  bool b = false; +  unsigned count = 0; +  for (unsigned i = 0; i < sz-1; i++) { +    for (unsigned j = i+1; j < sz; j++) { +      if (threshold > 0) { +        if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) +          training.push_back(make_pair((*s)[i], (*s)[j])); +      } else { +        if ((*s)[i].score != (*s)[j].score) +          training.push_back(make_pair((*s)[i], (*s)[j])); +      } +      if (++count == max) { +        b = true; +        break; +      } +    } +    if (b) break; +  } +} + +/* + * multipartite ranking + *  sort (descending) by bleu + *  compare top X to middle Y and low X + *  cmp middle Y to low X + */ + +inline void +partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, float hi_lo) +{ +  unsigned sz = s->size(); +  if (sz < 2) return; +  sort(s->begin(), s->end(), cmp_hyp_by_score_d); +  unsigned sep = round(sz*hi_lo); +  unsigned sep_hi = sep; +  if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi; +  else sep_hi = 1; +  bool b = false; +  unsigned count = 0; +  for (unsigned i = 0; i < sep_hi; i++) { +    for (unsigned j = sep_hi; j < sz; j++) { +#ifdef DTRAIN_FASTER_PERCEPTRON +      if ((*s)[i].model <= (*s)[j].model) { +#endif +      if (threshold > 0) { +        if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) +          training.push_back(make_pair((*s)[i], (*s)[j])); +      } else { +        if ((*s)[i].score != (*s)[j].score) +          training.push_back(make_pair((*s)[i], (*s)[j])); +      } +      if (++count == max) { +        b = true; +        break; +      } +#ifdef DTRAIN_FASTER_PERCEPTRON +      } +#endif +    } +    if (b) break; +  } +  unsigned sep_lo = sz-sep; +  while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo; +  for (unsigned i = sep_hi; i < sz-sep_lo; i++) { +    for (unsigned j = sz-sep_lo; j < sz; j++) { +#ifdef DTRAIN_FASTER_PERCEPTRON +      if ((*s)[i].model <= (*s)[j].model) { +#endif +      if (threshold > 0) { +        if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) +          training.push_back(make_pair((*s)[i], (*s)[j])); +      } else { +        if ((*s)[i].score != (*s)[j].score) +          training.push_back(make_pair((*s)[i], (*s)[j])); +      } +      if (++count == max) return; +#ifdef DTRAIN_FASTER_PERCEPTRON +      } +#endif +    } +  } +} + +/* + * pair sampling as in + * 'Tuning as Ranking' (Hopkins & May, 2011) + *     count = 5000 + * threshold = 5% BLEU (0.05 for param 3) + *       cut = top 50 + */ +bool +_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b) +{ +  return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score)); +} +inline void +PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, float _unused=1) +{ +  unsigned max_count = 5000, count = 0, sz = s->size(); +  bool b = false; +  for (unsigned i = 0; i < sz-1; i++) { +    for (unsigned j = i+1; j < sz; j++) { +      if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) { +        training.push_back(make_pair((*s)[i], (*s)[j])); +        if (++count == max_count) { +          b = true; +          break; +        } +      } +    } +    if (b) break; +  } +  if (training.size() > 50) { +    sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d); +    training.erase(training.begin()+50, training.end()); +  } +  return; +} + + +} // namespace + +#endif + | 
