diff options
author | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
---|---|---|
committer | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
commit | 3d8d656fa7911524e0e6885647173474524e0784 (patch) | |
tree | 81b1ee2fcb67980376d03f0aa48e42e53abff222 /training/dtrain/pairsampling.h | |
parent | be7f57fdd484e063775d7abf083b9fa4c403b610 (diff) | |
parent | 96fedabebafe7a38a6d5928be8fff767e411d705 (diff) |
fixed conflicts
Diffstat (limited to 'training/dtrain/pairsampling.h')
-rw-r--r-- | training/dtrain/pairsampling.h | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/training/dtrain/pairsampling.h b/training/dtrain/pairsampling.h new file mode 100644 index 00000000..3f67e209 --- /dev/null +++ b/training/dtrain/pairsampling.h @@ -0,0 +1,140 @@ +#ifndef _DTRAIN_PAIRSAMPLING_H_ +#define _DTRAIN_PAIRSAMPLING_H_ + +namespace dtrain +{ + + +bool +accept_pair(score_t a, score_t b, score_t threshold) +{ + if (fabs(a - b) < threshold) return false; + return true; +} + +bool +cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b) +{ + return a.score > b.score; +} + +inline void +all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float _unused=1) +{ + sort(s->begin(), s->end(), cmp_hyp_by_score_d); + unsigned sz = s->size(); + bool b = false; + unsigned count = 0; + for (unsigned i = 0; i < sz-1; i++) { + for (unsigned j = i+1; j < sz; j++) { + if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; + if (threshold > 0) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) + training.push_back(make_pair((*s)[i], (*s)[j])); + } else { + if ((*s)[i].score != (*s)[j].score) + training.push_back(make_pair((*s)[i], (*s)[j])); + } + if (++count == max) { + b = true; + break; + } + } + if (b) break; + } +} + +/* + * multipartite ranking + * sort (descending) by bleu + * compare top X to middle Y and low X + * cmp middle Y to low X + */ + +inline void +partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float hi_lo) +{ + unsigned sz = s->size(); + if (sz < 2) return; + sort(s->begin(), s->end(), cmp_hyp_by_score_d); + unsigned sep = round(sz*hi_lo); + unsigned sep_hi = sep; + if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi; + else sep_hi = 1; + bool b = false; + unsigned count = 0; + for (unsigned i = 0; i < sep_hi; i++) { + for (unsigned j = sep_hi; j < sz; j++) { + if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; + if (threshold > 0) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) + training.push_back(make_pair((*s)[i], (*s)[j])); + } else { + if ((*s)[i].score != (*s)[j].score) + training.push_back(make_pair((*s)[i], (*s)[j])); + } + if (++count == max) { + b = true; + break; + } + } + if (b) break; + } + unsigned sep_lo = sz-sep; + while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo; + for (unsigned i = sep_hi; i < sz-sep_lo; i++) { + for (unsigned j = sz-sep_lo; j < sz; j++) { + if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; + if (threshold > 0) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) + training.push_back(make_pair((*s)[i], (*s)[j])); + } else { + if ((*s)[i].score != (*s)[j].score) + training.push_back(make_pair((*s)[i], (*s)[j])); + } + if (++count == max) return; + } + } +} + +/* + * pair sampling as in + * 'Tuning as Ranking' (Hopkins & May, 2011) + * count = 5000 + * threshold = 5% BLEU (0.05 for param 3) + * cut = top 50 + */ +bool +_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b) +{ + return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score)); +} +inline void +PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0) +{ + unsigned max_count = 5000, count = 0, sz = s->size(); + bool b = false; + for (unsigned i = 0; i < sz-1; i++) { + for (unsigned j = i+1; j < sz; j++) { + if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) { + training.push_back(make_pair((*s)[i], (*s)[j])); + if (++count == max_count) { + b = true; + break; + } + } + } + if (b) break; + } + if (training.size() > 50) { + sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d); + training.erase(training.begin()+50, training.end()); + } + return; +} + + +} // namespace + +#endif + |